Study of ⁸²Ga populated from the beta decay of ⁸²Zn

ISS441 Collaboration

Ioana Gheorghe IFIN – HH Bucharest Romania

Outline

- IS441 experiment scientific motivation
- Experimental facility ISOLDE, CERN
- Experimental setup
- β^{-} decay chains of ${}^{82}Zn$
 - ⁸²Rb contamination issue
 - Identification of ⁸²Zn
- Halflife of ⁸²Zn
- β / β -n decay ratio of ⁸²Zn
- Tentative level schemes for ^{82,81}Ga

IS441 experiment

• IS441 experiment:

 Ultra Fast Timing measurements campaign on neutron rich nuclei in the vicinity of ⁷⁸Ni.

- ⁸²Zn beta decay results:
 - Astrophysical interest:

z	80Se STABLE	81Se 18.45 M	82Se STABLE	83Se 22.3 M	84Se 3.26 M	85Se 32.9 S	86Se 14.3 S	87Se 5.50 S	88Se 1.53 S
	49.61% 2β-	β-: 100.00%	8.73%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.20%	β-: 100.00% β-n: 0.67%
33	79As 9.01 M	80As 15.2 S	81As 33.3 S	82As 19.1 S	83As 13.4 S	84A <i>s</i> 4.2 S	85As 2.021 S	86A <i>s</i> 0.945 S	87As 0.56 S
	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.18%	β-: 100.00% β-n: 59.40%	β-: 100.00% β-n: 26.00%	β-: 100.00% β-n: 15.40%
32	78Ge 88.0 M	79 Ge 18.98 S	80Ge 29.5 S	81Ge 7.6 S	82Ge 4.56 S	83Ge 1.85 S	84Ge 0.954 S	85Ge 0.56 S	86Ge >150 NS
	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 10.20%	β-: 100.00% β-n: 14.00%	β-n β-
31	77Ga 13.2 S	78Ga 5.09 S	79 Ga 2.847 S	80Ga 1.676 S	81Ga 1.217 S	82Ga 0.599 S	83Ga 308.1 MS	84Ga 0.085 S	85Ga <100 MS
	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 0.09%	β-: 100.00% β-n: 0.86%	β-: 100.00% β-n: 11.90%	β-: 100.00% β-n: 19.80%	β-: 100.00% β-n: 62.80%	β-: 100.00% β-n: 74.00%	β-n > 35.0% β-
30	76Zn 5.7 S	77Zn 2.08 S	78Zn 1.47 S	79Zn 0.995 S	80Zn 0.54 S	81Zn 304 MS	82Zn >150 NS	83Zn >300 NS	84Zn >633 NS
	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 1.30%	β-: 100.00% β-n: 1.00%	β-: 100.00% β-n: 7.50%	β-	β-n β-	β-2n β-
	46	47	48	49	50	51	52	53	N

- $\circ\,$ Interesting region for describing the r process dynamics $\,$ the vicinity of the N=50 shell closure
- \circ Nuclear properties of interest for the study of the r process:
 - $\circ \beta$ decay halflifes
 - $\circ \beta$ delayed neutron emission probabilities P_n
- Verify model predictions and put constraints on the model parameters

82Zn and 82Ga data

Constrain shell model interactions.

⁸²Zn Z = 30 2 p in (1f7/2 2p3/2 1f5/2 2p1/2) orbitals N = 52 2 n in (1g9/2 1g7/2 2d5/2 2d3/2 3s1/2) orbitals

For beta decay lifetime predictions:

- fp and gds shells valence space for protons
- gds shell valence space for neutrons

```
<sup>82</sup>Ga
Z = 31
3 protons in ( 1f7/2 2p3/2 1f5/2 2p1/2 ) orbitals
N = 51
1 neutron in ( 1g9/2 1g7/2 2d5/2 2d3/2 3s1/2)
```

For excited states predictions:

- fp shell valence space for protons
- gds shell valence space for neutrons

Experimental facility : ISOLDE – CERN

- Radioactive beam fission products (2000 °C hot UCx/graphite target)
- 1.4 GeV PS Booster proton beam directed onto a neutron converter
- Chemical species separated by laser ion source (RILIS)
- High Resolution Separator (HRS) mass selection
- ⁸²Zn separated and implanted on a Aluminium foil

Experimental setup

- $\beta \gamma \gamma$ coincidences
- Three types of detectors:
 - 2 x HPGe 100% efficiency
 - 2 x LaBr3 scintillator
 - 1 x plastic scintillator NE111A β detector

- Acquisition system: **Digital Gamma Finder** (DGF) Pixie standard
 - Pixie time

TAC

- proton impact moment
- detector signal moment (γ or β detection)
- 75 MHz clock

Time information:

- β HPGe TAC
- β LaBr3 TAC
- LaBr3 LaBr3 TAC

- Energy information:
- β energy only in coincidence with any of the γ detectors
- γ energy from LaBr3 and HPGe detectors ungated

A signal triggered by the beam impingement on the UCx target was also collected. This pulse marks the starting point on ⁸²Zn beta accumulation and decay curve and was used for timing purposes.

β – decay chains of ⁸²Zn

 $\label{eq:alpha} \begin{array}{ll} ^{82}Zn \rightarrow {}^{82}Ga + e^- + \widetilde{\nu}_e & \beta^- \, \text{branch} \\ ^{82}Zn \rightarrow {}^{81}Ga + e^- + \widetilde{\nu}_e + n & \beta n \, \text{branch} \end{array}$

11th Russbach School on Nuclear Astrophysics – March

199192

⁸²Rb contamination

⁸²Rb also ionised – the beam was heavily contaminated ⁸²Rb + $e^- \rightarrow {}^{82}Kr + v_e$ Strongest lines in the spectra – gammas from ${}^{82}Kr$

8804

5784

120

10966.2

9903.2

6.472 h 1.273

Q: Did we separate ⁸²Zn? Do we detect any ⁸²Zn activity?

Enhance fast components in the spectra:

- Beta gate
- Time to proton gate Result:
 - Identification of peaks corresponding to known 81 Ga γ transitions

Q: Is ⁸¹Ga populated by the β -n decay of ⁸²Zn?

Possibilities:

- Populated by the β^{-} decay of ${}^{81}Zn$
- Populated by the β -n decay of ${}^{82}Zn$

Confirmation:

• Compare the halflife obtained by fitting the background subtracted decay curve of the 351 keV transition with the known halflife of ⁸¹Zn.

Left image:

- γ transitions used to determine the halflifes of 82 Zn (351 keV) and 82 Ga (1348 keV).
- β gated and time gated spectra
- gate on 700 ms in respect to the proton pulse. **Right image:**
- decay curves for ⁸²Zn and ⁸²Ga.
- data fit to an exponential decay plus constant.

1901 i

β delayed neutron emission probabilities (P_n) for ⁸²Zn

⁸²Zn ?%
$$\beta \rightarrow {}^{82}$$
Ga 80.2% $\beta \rightarrow {}^{82}$ Ge $\rightarrow {}^{82}$ As $\rightarrow {}^{82}$ Se
⁸²Zn ?% $\beta n \rightarrow {}^{81}$ Ga 12% $\beta n \rightarrow {}^{80}$ Ge $\rightarrow {}^{80}$ As $\rightarrow {}^{80}$ Se

Nucleus	γ [keV]	Iγ
⁸² Se	654	14 ± 3 %
g ⁸⁰ Se	666	42 ± 5 %

No neutron detectors => estimation of the P_n branching ration using the total production of stable nuclei from different decay chains of ⁸²Zn.

- A=80 chain
 - P_n for ${}^{81}Ga = 11.9 \pm 0.7 \%$
 - 666 keV γ transition in ⁸⁰Se
- A=82 chain
 - P_n for ${}^{82}Ga = 19.8 \pm 0.7 \%$
 - $654 \text{ keV } \gamma$ transition in ⁸²Se

β delayed neutron emission probabilities (P_n) for ⁸²Zn

βn Decays of 82Zn

 $\beta + \beta n = \beta$ Decays of ⁸²Zn + $\beta n Decays$ of ⁸²Zn

 $\beta n \, Decays \, of \, 82 As \, / \beta n \, br. \, of \, 82 Ga$

 β Decays of 82As / β br.of 82Ga+ β decays of 80As / β n br.of 81Ga

A (Z=30, Zn isotopes)

Identification of γ transitions in ⁸²Ga

- time to proton impact
 - known gammas in ⁸¹Ga

Based on:

- long lived component (1-5 sec to proton pulse) renormalized and subtracted from the short lived one (first 700 ms to proton pulse)
- Renormalization done using an intense transition (776 keV) in ⁸²Kr

Identification of γ transitions in ⁸²Ga

11th Russbach School on Nuclear Astrophysics – March

Summary

- ⁸²Zn was produced and separated at the ISOLDE facility.
- We precisely remeasured the halflife of ⁸²Zn.
- We obtained the β delayed neutron emission probabilities of ${}^{82}Zn$.
- Constructed tentative level schemes for ⁸²Ga (populated by the β⁻ decay of ⁸²Zn) and for ⁸¹Ga (populated by the β⁻ n decay of ⁸²Zn).

IS441

Collaboration:

I. Gheorghe¹, N. Mărginean¹, R. Lică¹, D.G. Ghiță¹, H. Mach^{2, 3}, L.M. Fraile², A. Aprahamian⁴, C. Bernards^{5, 6}, J.A. Briz⁷, B. Bucher⁴, C. Chiara⁸, Z. Dlouhý^{9,†}, B. P. Hoff¹⁰, J. Jolie⁵, U. Köster¹¹, W. Kurcewic¹², R. Mărginean¹, B. Olaziola², V. Paziy², J.M. Régis⁵, M. Rudigier⁵, T. Sava¹, G. Simpson¹¹, M. Stănoiu¹, L. Stroe¹, W. Walters¹³

- 1. H. Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania,
- 2. Grupo de Fisica Nuclear, Facultad de CC. Fisicas, Universidad Complutense, Madrid, Spain,
- **3.** Medical and Scientific Time Imaging Consulting, Nyköping, Sweden,
- 4. Department of Physics, University of Notre Dame, Notre Dame, Indiana, USA,
- 5. Institut für Kernphysik, Köln, Germany,
- 6. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut, USA,
- 7. Instituto de Estructura de la Materia, Madrid, Spain,
- 8. Argonne National Laboratory, Lemont, Illinois, USA,
- 9. Nuclear Physics Institute, AS CR, Řež, Czech Republic,
- **10.** Department of Chemistry, University of Oslo, Oslo, Norway,
- 11. Laboratoire de Physique Subatomique et de Cosmologie (LPSC) Grenoble, France,
- 12. Institute of Experimental Physics, University of Warsaw, Warsaw, Poland,
- 13. Department of Chemistry, University of Maryland, College Park, Maryland, USA

