

Gamma-Ray Astronomy (& nuclear astrophysics)

esa

by Roland Diehl (MPE Garching, Germany)

Themes:

- ☆ Supernova Interiors
- ☆ Massive Star Nucleosynthesis
- ☆ ISM Around Massive Stars
- ☆ (Annihilating Positrons)
- ☆ Gamma-Ray Telescopes

Russbach Workshop, 12 Mar 2014

Roland Diehl

Gamma-Ray Lines and their Messages

- Radioactive Trace Isotopes are Nucleosynthesis By-Products
- For Gamma-ray Spectroscopy We Need:

Decay Time > Source Dilution Time

Yields > Instrumental Sensitivities

Isotope	Mean Lifetime	Decay Chain	γ -Ray Energy (keV)		
⁷ Be	77 d	⁷ Be → ⁷ Li*	478]	
⁵⁶ Ni	111 d	56 Ni \rightarrow 56 Co* \rightarrow 56 Fe*+e ⁺	158, 812; 847, 1238		
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122		>
²² Na	3.8 y	22 Na \rightarrow 22 Ne* + e ⁺	1275		individual
⁴⁴ Ti	85 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157		object/event
²⁶ AI	1.04 10 ⁶ y	$^{26}AI \rightarrow ^{26}Mg^* + e^+$	1809	1<	cumulative
⁶⁰ Fe	3.8 10 ⁶ y	⁶⁰ Fe → ⁶⁰ Co* → ⁶⁰ Ni*	59, 1173, 1332	1	<pre>> from many</pre>
e⁺	10⁵y	e ⁺ +e ⁻ → Ps → γγ	511, <511		events

Cosmic Radioactivities: Example

^{Cond} Long Lifetime due to large angular-momentum state differences

Astronomical Gamma-Ray Telescopes: Interaction_of_HE_Photons_with_Matter_

Roland Diehl

Compton Telescopes

Measure Compton Scattering: Detectors in Coincidence

Russbach Workshop, 12 Mar 2014

INTEGRAL Cosmic Photon Measurements: The SPI Ge γ -Spectrometer

Coded-Mask Telescope

Energy Range 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16°

A Sky Survey with INTEGRAL's Coded-Mask Telescopes

☆ "Dither Patterns" Scattered over the Sky → changing shadowgrams

SPI Count Rate History 2002 - 2013

Russbach Workshop, 12 Mar 2014

Energy Spectra: Characteristic Examples

²⁶Al in our Galaxy: g-ray Image and Spectrum

Snapshot of Current Enrichment (~My) from ²⁶Al γ-rays

Measuring the ²⁶Al Gamma-Ray Line from the Galaxy

Increasing Exposure (Oct 2002.... Today)

Using the ²⁶Al Line to Characterize the Galaxy

☆ Measured Gamma-Ray Flux☆ Galaxy Geometry

^A²⁶Al Yields per Star Stellar Mass Distribution

M_{ISM} ~5 10⁹ M_☉

☆ Gas Mass in Galaxy

²⁶Al Mass in Galaxy = 2.25 (±0.65) M_☉

✓ cc-SN Rate = 1.5 (± 0.9) per Century
 ✓ SFR = 3.1 M_☉/yr

The Galactic Star Formation Rate

 \odot Overall Rate ~2..3 M_☉/yr (1.9 +/-0.4 M_☉/yr, Chomiuk&Povich 2012)

Various methods, different biases

Extragalactic/galactic; sampling region; IMF; models

Roland DishL 2013

... from SN statistics in other galaxies; ionization; dust; star counts; nucleosynthesis – opt...radio..IR.. γ -rays

⁶⁰Fe Emission is Seen from the Galaxy

☆ Gamma-ray Signal Now Beyond 'Hints'/'Limits' (5σ) ☆ ⁶⁰Fe/²⁶Al Emission Ratio ~15%

Russbach Workshop, 12 Mar 2014

Massive-Star Structure Diagnostics: ⁶⁰Fe/²⁶Al Ratio

• Two Isotopes from Same Source Type \rightarrow Eliminate Astronomical Bias

Production-

Site Detail (adapted from Heger)

Yield of ⁶⁰Fe: Sensitive to Model Issues

Model Parameters Have Major Impact on Total Yield

⁶⁰Fe/²⁶AI: Expectations from stars as they form and explode

- Hydrodynamical
 Simulations of a Giant
 Molecular Cloud's
 Evolution
 → Stars, SNe,
 - Ejecta Flows and Feedback
 - Vasileiadis, Nordlund, and Bizzarro 2013

The ²⁶Al/²⁷Al Isotope Ratio

- ☆ Current ISM Value Measured from γ -Rays → 6 10⁻⁶
 - ^{CP} evolution ²⁷Al \sim t² (secondary isotope), ²⁶Al steady \rightarrow 1.5 10⁻⁵ in ISM at ESS
- ★ Compare to Meteoritic (=ESS) and Presolar-Grain (sources) values
 - ^{CP}ESS Meteorites: 5.2 10⁻⁵

☆ Enrichment of ESS?

ISM transport towards a newly-forming star/Sun

- From the dynamic ISM a concentration of gas cools → protostar
- ISM ingestion through rapid disk flow
- Accreting ISM partly forms solids at inner disk edge

A Measurements from Early Condensated Bodies:

^CInitial ⁶⁰Fe/⁵⁶Fe ratios uncertain between few 10⁻⁷ and <10⁻⁸

Russbach Workshop, 12 Mar 2014

SN Ejecta Nearby: Transport in ISM

⁶⁰Fe Clearly Seen on Earth

☆ in Oceanfloor Sample (Knie et al.)

- ☆ in Lunar Samples (Fimiani et al.)
- ☆ in Sediments (Bishop et al.)

☆SN Ejecta Transport at ~10pc Scale??

High-Resolution Gamma-Ray Spectroscopy

✓ 21 Annealings
 Successfully Completed
 (up to end 2013)

✓ 15 of 19 Detectors
 Operational with Fine
 Resolution

- Cosmic-Ray Irradiation
 - \rightarrow Degradation of Charge Collection
 - ☆ ~2% per Orbit, ~20% in 6 Months (@1 меv)
- Annealings: ~100-200 hrs at 105°C, few hrs at 90K

Spatially-Resolved Spectroscopy

Analyze Line Shape and Position for Different Directions
 Galactic Rotation

²⁶Al in the Inner Galaxy: Excess Gas Velocities Seen in ²⁶Al

How Massive-Star Feedback Occurs...

 ²⁶Al Kinematics → Large-scale preference for outflow towards spiral-arm's leading edges
 Massive-Star and SN ejecta expand in superbubbles, and away from sites of star formation → Feedback??

(approaching distant end of bar)

see also Krause et al., A&A 2013; Rogers & Pittard, MNRAS 2013: **Feedback is different from simple spherically-symmetric picture** Kretschmer et al., A&A 2013

SN2014J

 10^{2}

5

0

Time since first detection: Jan 16.381 UT (MJD=56673.3811)

trend curves

-5

18

20

SNIa: Model Issues

SNIa: Optical Light and Radioacivity Gamma-Rays

Gamma-Calibrate SNIa Models in Early (10d) and Late (~100d) SNR Evolution

Issues: Phillips Relation, Light Transport Codes from Gamma to X/UV/OPT/IR

Nucleosynthesis in CC-Supernova Models and ⁴⁴Ti

• ⁴⁴Ti Produced at r < 10³ km from α -rich Freeze-Out,

=>Unique Probe (+Ni Isotopes)

Russbach Workshop, 12 Mar 2014

Roland Diehl

NuSTAR and ⁴⁴Ti

☆ Imaging in hard X-rays (3-79 keV) → ⁴⁴Ti lines at 68,78 keV

- Cas A: first mapping of radioactivity in a SNR ever
 - Both ⁴⁴Ti lines detected clearly
 - − line redshift 0.5 keV
 → 2000 km/s redshift asymmetry
 - Image differs from Fe!!
 - ⁴⁴Ti flux consistent with earlier measurements
 - continuum: harder near rim

SN1987A: 6 σ , consistent with INTEGRAL flux (no image)

F Harrison, AG Tübingen Sep 2013 Grefenstette et al., Nat, 2014 Roland Diehl

⁴⁴Ti γ -rays from Cas A

⁴⁴Ti Ejected Mass ~1.23 ±0.25 10⁻⁴ M_☉

Russbach Workshop, 12 Mar 2014

SN1987A with INTEGRAL

INTEGRAL Line Band Imaging with IBIS (Grebenev+2012)

Detection at 5s significance (6 Ms exposure)

Figure 1 | Hard-X-ray images indicating the detection of ⁴⁴Ti emission lines from SNR 1987A. a–c, Maps of the signal-to-noise ratio (*S/N*) of the $1.5^{\circ} \times 1.5^{\circ}$ sky region around SNR 1987A accumulated in three energy bands with the IBIS/ISGRI telescope on board INTEGRAL during observations in 2003–2011 (~6.0 Ms of real exposure or ~4.2 Ms of dead-time-corrected exposure): 48–65 keV (a); 65–82 keV (b); 82–99 keV (c). The maps were reconstructed using standard techniques²⁷ with contours given at *S/N* levels of 2.7, 3.3, 3.9, 4.5, 5.4 and 6.3. Two well-known sources, PSR B0540–69 and LMC X-1, are seen bright in all three images, but SNR 1987A is confidently detected only in **b**, in the band that contains the 67.9- and 78.4-keV direct-escape lines of radioactive ⁴⁴Ti decaying inside the ejecta.

⁴⁴Ti Ejected Mass ~3.1 ±0.8 10⁻⁴ M_☉ LC Analysis Jerkstrand+2011: ~1...2 10⁻⁴ M_☉

Russbach Workshop, 12 Mar 2014

Ŕ

"Abnormal" Core Collapse Supernovae as ⁴⁴Ca (=⁴⁴Ti) Sources?

⇒ The et al. 2006 Russbach Workshop, 12 Mar 2014

Roland Diehl

ntzos Eds.

 \square

Astr

Astronomy with INTEGRAL & Cosmic Radioactivities Summary Radioactivities

☆ Radioactivity γ-rays provide a unique / different view
 ✓ Yield constraints for SNe and Novae, Independent of complexity from unfolding of the explosion
 ☞ Radioactivity traces diluted ejecta at late phases
 ☆ SNIa ⁵⁶Ni, and Nova early β decay & ²²Na Calibrations:
 ✓ SN2014J → Luck happens. Still awaiting a nearby nova.

- CCSupernova ⁴⁴Ti is Sensitive to Asymmetries
 Only Some SN Eject ⁴⁴Ti, but then much, and clumpy
- Massive-star shell structure & evolution tests: ²⁶Al, ⁶⁰Fe ^{CP 26}Al as a tool; next: test groups of specific ages... ^{CP} How much ⁶⁰Fe from n captures in C and He shells?
- ISM dynamics around massive-star regions: new tools
 S²⁶Al spreading and kinematics; e⁺ transport

Roland Diehl