Nuclear astrophysics studies at the RIKEN RIBF

Tohru Motobayashi (RIKEN Nishina Center)

Russbach Mar. 2014

Nuclear astrophysics studies at the RIKEN RIBF, a new-generation RIB facility

Some new results from Japan Challenges at RIBF recent results experiments on-going future programs

Mar. 2014

Russbach

Nuclear chart potentially covered by RIBF

© The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of Japan.

Large Japanese Accelerators available for Nuclear Physics Community

Small

Japanese Accelerators available for Nuclear Physics Community

photon (inverse Compton)

Kyushu U. Tandem

Challenge for low-energy ${}^{12}C(\alpha,\gamma){}^{16}O$ cross sections

-- A long-standing question for helium burning \rightarrow neutron stars..

Courtesy of Kenshi Sagara

⁷Be(α,γ) study at CRIB

 CNS Radio-Isotope Beam separator, operated by CNS (Univ. of Tokyo), located at RIBF (RIKEN Nishina Center).

Is this reaction competitive to triple- α in vp process?

Mar. 2014

Russbach

Courtesy of Hidetoshi Yamaguchi

⁷Be+ α Excitation functions

• For 4 excitation functions... *H. Yamaguchi et al., PRC (2013).* Excitation energy in ¹¹C (MeV)

Small but not negligible contribution from the **newly-identified resonances** compared to lower-lying states (~10%).

Russbach

RCNP Cyclotron Facility

Courtesy of Nori Aoi

RCNP Cyclotron Facility

大阪大学・核物理研究中心

Osaka University Research Center

for NiK400Ring Cyclotronpol p400 MeV³He140 AMeVLight heavy ion100 AMeVHeavy ion

High-resolution particle spectroscopy at RCNP

RIKEN RIBF

RIKEN RIBF

A new-generation RIB facility

Major motivations of studying unstable nuclei

nuclear structure / response

halo, skin, shell structure *e.g. (*dis)appearance of magic numbers

asymmetric nuclear matter

explosive nuclear burning reaction cross section mass (*Q* value), half-life, ...

First RI beams LBL in 1985 Louvain la Neuve in 1989 RIKEN in 1990

"Fragmentation" method "ISOL" method "Fragmentation" method

Russbach

RIKEN RIBF (RI Beam Factory) -- fragmentation-based RI bems (1990- / 2007-)

RIBF – a new generation RIB facility in operation with world highest capability of providing RI beams in coming years!

RI beam production by "projectile fragmentation*"

c.f. "ISOL" method

Projectile with 20-70% of light speed
 → fragment in similar velocity and direction
 Various products → selection
 → secondary beams of unstable nuclei (RI beams)

RIBF uses "projectile fission" in addition.

Mar. 2014

Russbach

* known in cosmic-ray studies

Nuclear chart potentially covered by DID

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..)
 -- Nishimura (decay)
 3. Coulomb dissociation at SAMURAI → rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) \rightarrow low-energy studies \rightarrow OEDO project (slowdown RI-beams)

Russbach

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..)
 -- Nishimura (decay)
 3. Coulomb dissociation at SAMURAI → rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) → low-energy studies → OEDO project (slowdown RI-beams)

a recent highlight -- an example of RIBF experiments

LETTER

doi:10.1038/nature12522

Evidence for a new nuclear 'magic number' from the level structure of $^{54}\mathrm{Ca}$

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee², K. Matsui⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama⁸, H. Suzuki², R. Taniuchi⁵, Y. Utsuno⁹, J. J. Valiente-Dobón¹⁰ & K. Yoneda²

Neutron number 34 makes exotic calcium-54 isotopes doubly magic PAGE 207

Russbach

. . .

Mar. 2014

1

Excitation energies of 2⁺ states

H. Wang *et al.*, PRC 88 (2013) 054318
H. Watanabe *et al.*, PRL 111 (2013) 152501
H. Wang *et al.*, PTEP 2014 (2014) 023D02

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..) -- Nishimura (decay)
- 3. Coulomb dissociation at SAMURAI \rightarrow rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) \rightarrow low-energy studies \rightarrow OEDO project (slowdown RI-beams)

SAMURAI large acceptance spectrometer at RIBF secondary beam experiments (2012-)

Possible experiments in the first stage **Captures in the rp-, p- process** ⁵⁶Ni(p,γ)⁵⁷Cu, ⁶⁴Ge(p,γ)⁶⁵As, ⁶⁸Se(2p,γ)⁷⁰Kr, ¹⁰⁰Sn(p,γ)¹⁰¹Sb, . . . Stability line (Sn) 5 Protons 126 (Ni)82 Experiments: from 2013 (Ca) 2p decay "SAMURAI Collaboration" 50 ¹⁷Ne, ²⁰Mg, ²²Si,... Any new ideas: welcome. (O)28 <u>hot pp, ...</u> (He) ⁹C, ²⁷P .. Mar. 2014 Russbach

Neutrons

If the Brink Hypothesis is applicable, γ -ray strength function is obtained by Coulomb dissociation. Utsunoiya (Konan U.) Radiative neutron capture continuum E, J, π $n^{+A}X$ Photoneutron emission $A^{+1}X(\gamma,n)^{A}X$

 $f_{X\lambda}(\varepsilon_{\gamma}) \downarrow = \frac{T_{X\lambda}(\varepsilon_{\gamma})}{2\pi} \varepsilon_{\gamma}^{-(2\lambda+1)}$ $f_{X\lambda}(\varepsilon_{\gamma}) \uparrow = \frac{\varepsilon_{\gamma}^{-2\lambda+1}}{(\pi hc)^{2}} \frac{\langle \sigma_{X\lambda}^{abs}(\varepsilon_{\gamma}) \rangle}{2\lambda+1}$ $\varepsilon_{\gamma} < S_{n}$ $\varepsilon_{\gamma} > S_{n}$

$$\mathcal{O}_{X\lambda}^{\gamma n}(\varepsilon_{\gamma}) = \mathcal{O}_{X\lambda}^{abs}(\varepsilon_{\gamma}) \times \frac{T_n}{T_n + T_{\gamma}}$$

Brink Hypothesis

$$f_{X\lambda}(\mathcal{E}_{\gamma}) \uparrow \cong f_{X\lambda}(\mathcal{E}_{\gamma}) \downarrow$$

Mar. 2014 Courtesy of H. Utsunomiya Russbach

γSF Method with Coulomb dissociation

Courtesy of H. Utsunomiya

Fission Barriers of Lead Isotopes

P. Möller et al.; Phys. Rev. C 79 (2009) 064304

Courtesy of W. Henning

Russbach

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..)
 -- Nishimura (decay)
 3. Coulomb dissociation at SAMURAI → rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) \rightarrow low-energy studies \rightarrow OEDO project (slowdown RI-beams)

Process can be (mostly) controlled by the reaction Q-values (not by σ). e.g. r-process?

equilibrium in explosive conditions: between the inverse processes e.g. radiative capture $\leftarrow \rightarrow$ photo-disintegration

Saha equation for A+n $\leftarrow \rightarrow$ (A+1)+ γ

$$\frac{N(Z,A+1)}{N(Z,A)} = N_n \left(\frac{h^2}{2\pi m_{An}kT}\right)^{3/2} \frac{2j_{Z,A+1}+1}{(2j_{Z,A}+1)(2j_n+1)} \frac{G_{Z,A+1}^{norm}}{G_{Z,A}^{norm}} e^{Q_{m\gamma}/kT}$$

level (density) temperature nuclear mass

 $Q_{n\gamma} = m(A)c^2 + m(n) c^2 - m(A+1) c^2$

Equipment and detectors in RIKEN RIBF – mass measurements

Isochronous storage ring method -- under construction 1event/day, 1ms, 1ppm (10⁻⁶ precision)

Systematic mass measurements Waiting-point of the r-process path

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..)
 -- Nishimura (decay)
 3. Coulomb dissociation at SAMURAI → rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) \rightarrow low-energy studies \rightarrow OEDO project (slowdown RI-beams)

Mar. 2014

Russbach

KISS KEK Isotope Separation System

Decay measurement stations E3-room

Nuclear chart potentially covered by RIBF

© The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of Japan.

Plenary Talks by J. Jose, R. Surman, S. Nishimura, ... A few more talks on nuclear astrophysics.

May 1st - early registration deadline. VIst http://ribf.riken.jp/ARIS2014/.

June 1st-6th 2014

Challenges at RIBF for nuclear astrophysics

- 1. β decay half lives of r-process nuclei -- Nishimura
- 2. spectroscopy of neutron-rich nuclei → shell quenching (around N=50, 82,..)
 -- Nishimura (decay)
 3. Coulomb dissociation at SAMURAI → rp (r) process, s-process
- 4. fission of n-rich nuclei at SAMURAI \rightarrow fission barrier height
- 5. weak processes by charge-exchange reactions in inverse kinematics
- 6. "Rare RI Ring": being constructed \rightarrow masses of r-process nuclei w. Tsukuba
- 7. "SLOWRI": financed $\rightarrow e.g.$ precision mass measurements by MRTOF \rightarrow r, rp process
- 8. Kiss project for spectroscopy in the "blank spot" r process 3rd peak
- 9. CRIB (CNS) \rightarrow low-energy studies \rightarrow OEDO project (slowdown RI-beams)

Russbach