¹²C+¹²C reactions at astrophysical energies: Tests of target behaviour under beam bombardment

Lizeth Morales-Gallegos

M. Aliotta, A. Di Leva, L. Gialanella, D. Schürmann, M. de Cesare, T. Davinson, G. Imbriani, M. Romano, M. Romoli

INFN

SUPA

11th Russbach School on Nuclear Astrophysics, Russbach, Austria. (March 2014)

$^{12}C+^{12}C$ reactions in stars: Temperature = 5×10^8 K

Previous works

Previous works showed: Higher temperature \rightarrow less contamination

Kettner et al., 1980 Barron-Palos et al., 2006 Spillane et al., 2007

No quantitative study

Aims of our project

- Heat up target with beam
- Map target temperature using a thermocamera
- Quantitative study of target behaviour under beam bombardment
- ➤Targets with ultra low H content (HOPG, diamonds)
- Pyrolytic and natural graphite

L. Morales-Gallegos, ¹²C+¹²C reactions 11th Russbach School on Nuclear Astrophysics

Laboratory CIRCE in Caserta, Italy

Map temperature

¹²C⁺³ Beam E=8MeV HOPG

¹²C⁺³ Beam E=8MeV HOPG

Normalized deuterium content

QMS information

Summary

- > Final aim \rightarrow measure 12C+12C
- \succ Key limitation \rightarrow contaminants in targets
- \succ Increase temperature \rightarrow decrease contaminants
- > Quantitative study of target behaviour under beam bombardment
- Designed setup provides temperature map of the target, normalized H content and rest gas composition
- Detector problems at high temperatures
- > No difference in deuterium content \rightarrow something is wrong!
- \succ Improvements \rightarrow N "aquarium" and water cooled flange

Thank you!

SUP/

 $S^{*}(E)=S(E)\exp(-gE)$

g=constant related to nuclear separation Usually g=0.43 MeV⁻¹

Theoretical models:

PA->proximity adiabatic potential (non resonant behaviour) KNS->Krappe-Nix-Sierck potential (non resonant behaviour) Jing-> based on hidrance behaviour