Study of the ¹⁹Ne spectroscopic properties of astrophysical interest via a new method of inelastic scattering (November 2013)

Florent Boulay (GANIL, France)

Nova Del 2013

1/13

1) Astrophysical motivations (Nova)

2) The experiment and preliminary results (Inelastic scattering of ¹⁹Ne)

3) Angular distribution

Picturing by François De Oliveira

Study of the ¹⁹Ne spectroscopic properties of astrophysical interest via a new method of inelastic scattering (November 2013) Nova Del 2013 0.001 511 keV 0.0001 6h 12h ສ F(phot/cm^t/s/keV) 10-8 Hernanz et •A key observable: Gamma rays at 511 keV 18h 10-478 keV 24h 10-7 [¬]redictions– 10-* -Study of ¹⁸F via ¹⁹Ne. 48h 10-0.1 E(MeV)

1)Astrophysical context

2) The experiment 3) Angular distribution

- •One of the main β + emitters: ¹⁸F
- 2 main reactions constrain the abundance of ¹⁸F ¹⁸F(p, α)¹⁵O et ¹⁸F(p, γ)¹⁹Ne.

(Gamow Window 300 GK)

2)The experiment

3)Angular distribution

b) Knowledge about ¹⁹Ne

No	E_x^{a} – (MeV)	J^{\pib}	$ \Gamma_{\gamma}^{c} \qquad \widehat{} (eV) $	Γ_p^{d} (keV)	Γ_{α}^{e} (keV)
1	6.419	$(\frac{3}{2}^+)$	0.77(41)	2.2(4)E-37	0.27(27)
2	(6.422)	$(\frac{11}{2}^+)$	0.35(18)	1.8(18)E-38	20(14)E-3
3	6.437	$\frac{1}{2}^{-}$	[1(1)]	1.1(11)E-20	220(20) (M)
4	6.449	$(\frac{3}{2}^+)$	1.1(6)	4(4)E-15	1.3(10)
5	(6.504)	$(\frac{7}{2}^+)$	0.14(8)	4.6(46)E-10	0.4(4)
6	(6.542)	$(\frac{9}{2}^+)$	0.30(16)	2.7(27)E-12	1.3(11)E-2
7	6.698	$(\frac{5}{2}^+)$	0.29(15)	1.2(12)E-5	1.2(10)
8	6.741	$\frac{3}{2}^{-}$	5.0(26)	2.22(69)E-3	5.2(37)
9	(6.841)	$(\frac{3}{2}^{-})$	2.8(15)	9.7(97)E-3	25(18)
10	6.861	$\frac{7}{2}^{-}$	2.3(12)	1.1(11)E-5	1.2(0.9)
11	(6.939)	$(\frac{1}{2}^{-})$	[1(1)]	3.4(34)E-2	99(69)
12	(7.054)	$(\frac{5}{2}^+)$	[1(1)]	4.7(47)E-2	29(25)
13	7.0757	$\frac{3}{2}^{+}$	[1(1)]	15.2(1)	23.8(12) (M)
14	7.173	$(\frac{11}{2}^{-})$	0.15(8)	9.8(98)E-8	1.2(10)E-2
15	7.238	$\frac{3}{2}^{+}$	[1(1)]	0.35(35)	6.0(52)

Values C. D. Nesaraja et al.(2007)

(Gamow Window 300 GK)

2)The experiment

3)Angular distribution

b) Knowledge about ¹⁹Ne

No E_x^{a} (MeV)	$-J^{\pi b}$	Γ_{γ}^{c} (eV)	${\Gamma_p}^{ m d}$ (keV)	Γ_{α}^{e} (keV)
1 6.419	$(\frac{3}{2}^+)$	0.77(41)	2.2(4)E-37	0.27(27)
2 (6.422) 3 6.437	$\frac{\left(\frac{11}{2}^{+}\right)}{\left(\frac{1}{2}^{-}\right)}$	0.35(18) [1(1)]	1.8(18)E-38 1.1(11)E-20	20(14)E-3 220(20)
4 6.449	$(\frac{3}{2}^+)$	1.1(6)	4(4)E-15	(M) 1.3(10)
5 (6.504) 6 (6.542)	$(\frac{7}{2}^+)$	0.14(8) 0.30(16)	4.6(46)E - 10 27(27)E - 12	0.4(4) 1 3(11)E-2
7 6.698	$\left(\frac{5}{2}^{+}\right)$	0.29(15)	1.2(12)E - 5	1.2(10)
8 6.741	$\frac{3}{2}^{-}$	5.0(26)	2.22(69)E-3	5.2(37)
9 (6.841) 10 6.861	$(\frac{3}{2}^{-})$	2.8(15) 2.3(12)	9.7(97)E-3 1.1(11)E-5	25(18) 1.2(0.9)
11 (6.939)	$(\frac{1}{2}^{-})$	[1(1)]	3.4(34)E-2	99(69)
12 (7.054) 13 7.0757	$\frac{\left(\frac{5}{2}^{+}\right)}{\frac{3}{2}^{+}}$	[1(1)] [1(1)]	4.7(47)E-2 15.2(1)	29(25) 23.8(12)
14 7.173	$\left(\frac{11}{2}^{-}\right)$	0.15(8)	9.8(98)E-8	(M) 1.2(10)E-2
15 7.238	$\frac{3}{2}^+$	[1(1)]	0.35(35)	6.0(52)

Values C. D. Nesaraja et al.(2007)

(Gamow Window 300 GK)

3)Angular distribution

b) Knowledge about ¹⁹Ne

A. M. Laird *et al* PRL (2012) : ¹⁹F(³He,t)¹⁹Ne.

Values C. D. Nesaraja et al.(2007)

c) An example : the resonant state at 8 keV

Reaction rate for resonant state at 8 keV of the reaction ${}^{18}F(p,\alpha){}^{15}O$

F. Boulay Master Thesis (2012)

c) An example : the resonant state at 8 keV

Reaction rate for resonant state at 8 keV of the reaction ${}^{18}F(p,\alpha){}^{15}O$

=> We do need to measure experimentally the spectroscopic properties of ¹⁹Ne

F. Boulay Master Thesis (2012)

The e641s experiment at GANIL

November 2013

1)Astrophysical context 2)The experiment 3)Angular distribution c) ¹⁹Ne* exitation energy spectra

Comparison in the range of excitation energy of ¹⁹Ne* (5.6 MeV and 6.6 MeV)

Improvement in resolution by a factor ~2 with the new method !!!!!

d) Coincidence with CD-Pad

d) Coincidence with CD-Pad

2) The experiment 3) Angular distribution 1)Astrophysical context

1)Astrophysical context

2) The experiment 3) Angular distribution

d) Coincidence with CD-Pad

2) The experiment

3)Angular distribution

J.G. Pronko and R.A. Lindgren Nuclear Instruments and Methods (1972)

 ${}^{19}\text{Ne}^* \rightarrow \alpha + {}^{15}\text{O}$ $W(\theta) = \sum_{mK} P(m) A(Jll' smK) Q_K P_K(\cos\theta) \rightarrow \text{with K=min(I+I',2J_i)} \rightarrow \text{Spin}$ where

 $A(Jll'smK) = (-1)^{|s-m|} \hat{l}l' \hat{J}^2(ll'00|K0) \times (JJm-m|K0) W(lJl'J;sK)$

12/13

Conclusion

Experiment

Online analysis : experiment is successful! (range of interest covered with good statistics...) The resolution is better with this new inelastic scattering method. Access to spin and widths in a model independent way

About the fine analysis

Study of angular correlation theory \checkmark

Starting of the analysis of the CD-PAD data

Thank you for your attention

A big thank to the collaboration !!!

GANIL (France) : F. Boulay, B. Bastin, F. De Oliveira, A. Lemasson, M. Rejmund, C. Schmitt, B. Jacquot, O. Kamalou, A.M. Sanchez Benitez, E. Traykov, C. Rodriguez, J. Grinyer, O. Sorlin, J.-C. Thomas and P. Delahaye.
University of Edinburgh (Scotland) : T. Davinson, V. Margerin, A. Estrade and P. J. Woods.
University of Santiago de Compostel (Spain) : D. Ramos.
University of York (England) : A. Laird.
IPN Orsay (France) : N. de Séréville.
University of Huelva (Spain) : G. Marquinez Duran and L. A. Acosta Sanchez.
LPC Caen (France) : L. Achouri.
Vinca Institute (Serbia) : P. Ujic.
Rez (Czech Republic) : J. Mrazek.
IFIN/HH (Romania) : F. Negoita, F. Rotaru, M. Stanoiu and C. Borcea .
Niewodniczanski Institute of Nuclear Physics (Poland) : M. Ciemala.