Study of the ${ }^{19} \mathrm{Ne}$ spectroscopic properties of astrophysical interest via a new method of inelastic scattering (November 2013)
Florent Boulay (GANIL, France)

1) Astrophysical motivations

Nova Del 2013

 (Nova)2) The experiment and preliminary results (Inelastic scattering of ${ }^{19} \mathrm{Ne}$)
3) Angular distribution

1)Astrophysical context

Study of the ${ }^{19} \mathrm{Ne}$ spectroscopic properties of astrophysical interest via a new method of inelastic scattering (November 2013)

Nova Del 2013

Authentic from Normandie

1)Astrophysical context

Study of the ${ }^{19} \mathrm{Ne}$ spectroscopic properties of astrophysical interest via a new method of inelastic scattering (November 2013)

Nova Del 2013

A key observable: Gamma rays at 511 keV
. One of the main $\beta+$ emitters: ${ }^{18} \mathrm{~F}$
.2 main reactions constrain the abundance of ${ }^{18} \mathrm{~F}:{ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{a})^{15} \mathrm{O}$ et ${ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{y})^{19} \mathrm{Ne}$.
. Study of ${ }^{18} \mathrm{~F}$ via ${ }^{19} \mathrm{Ne}$.
1)Astrophysical context
2)The experiment
3)Angular distribution
b) Knowledge about ${ }^{19} \mathrm{Ne}$

	No	$\begin{gathered} E_{x}^{a} \\ (\mathrm{MeV}) \end{gathered}$	-	$J^{\pi \mathrm{b}}$	$\begin{aligned} & \Gamma_{V}{ }^{c} \\ & (\mathrm{eV}) \end{aligned}$	\sim	$\begin{gathered} \Gamma_{p}{ }^{\mathrm{d}} \\ \left(\mathrm{keV}^{2}\right) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha}{ }^{\mathrm{e}} \\ (\mathrm{keV}) \end{gathered}$
	1	6.419		$\left(3^{+}+\right)$	0.77(41)		$2.2(4) \mathrm{E}-37$	0.27(27)
	2	(6.422)		$\left(\frac{11}{2}^{+}\right)$	0.35(18)		$1.8(18) \mathrm{E}-38$	2O(14)E-3
	3	6.437		$\frac{1}{2}^{-}$	[1(1)]		$1.1(11) \mathrm{E}-2 \mathrm{O}$	$\begin{gathered} 220(20) \\ (\mathrm{M}) \end{gathered}$
	4	6.449		$\left(3^{+}{ }^{+}\right)$	1.1 (6)		4(4)E-15	$1.3(10)$
\uparrow	5	(6.504)		$\left(\frac{7}{2}^{+}\right)$	0.14(8)		$4.6(46) \mathrm{E}-10$	O.4(4)
	6	(6.542)		($\frac{9}{2}^{+}$)	0.30(16)		$2.7(27) \mathrm{E}-12$	1.3(11)E-2
	7	6.698		$\left(\frac{5}{2}^{+}\right)$	0.29(15)		$1.2(12) \mathrm{E}-5$	$1.2(10)$
	8	6.741		$\frac{3}{2}^{-}$	$5.0(26)$		$2.22(69) \mathrm{E}-3$	5.2(37)
	9	(6.841)		($\frac{3}{2}^{-}$)	2.8(15)		9.7(97)E-3	25(18)
	10	6.861		$\frac{7}{2}{ }^{-}$	2.3(12)		$1.1(11) \mathrm{E}-5$	1.2(0.9)
	11	(6.939)		$\left(\frac{1}{2}^{-}\right)$	[1(1)]		$3.4(34) \mathrm{E}-2$	99(69)
	12	(7.054)		$\left(\frac{5}{2}^{+}\right)$	[1(1)]		$4.7(47) \mathrm{E}-2$	29(25)
	13	7.0757		$\frac{3}{2}+$	[1(1)]		15.2(1)	$\begin{gathered} 23.8(12) \\ (M) \end{gathered}$
	14	7.173		$\left(\frac{11}{2}^{-}\right.$)	0.15(8)		$9.8(98) \mathrm{E}-8$	$1.2(10) \mathrm{E}-2$
	15	7.238		$\frac{3}{2}+$	[1(1)]		0.35(35)	6.0(52)

Values C. D. Nesaraja et al.(2007)
2/13
1)Astrophysical context
2)The experiment
3)Angular distribution
b) Knowledge about ${ }^{19} \mathrm{Ne}$

Values C. D. Nesaraja et al.(2007)
1)Astrophysical context
2)The experiment
b) Knowledge about ${ }^{19} \mathrm{Ne}$

D. J. Mountford et al. PRC (2012) : ${ }^{18} \mathrm{~F}(\mathrm{p}, \alpha)^{19} \mathrm{Ne} @ 3.924 \mathrm{MeV} / \mathrm{u}$

c) An example : the resonant state at 8 keV

Reaction rate for resonant state at 8 keV of the reaction ${ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{\alpha}){ }^{15} \mathrm{O}$

F. Boulay Master Thesis (2012)

c) An example : the resonant state at 8 keV

Reaction rate for resonant state at 8 keV of the reaction ${ }^{18} \mathrm{~F}(\mathrm{p}, \mathrm{\alpha}){ }^{15} \mathrm{O}$

=> We do need to measure experimentally the spectroscopic properties of ${ }^{19} \mathrm{Ne}$
F. Boulay Master Thesis (2012)

The e641s experiment at GANIL

November 2013

1)Astrophysical context

1)Astrophysical context

2)The experiment
3)Angular distribution
1)Astrophysical context

- Plastic

detector
$\left[\begin{array}{l}\text { Set of } 3 \text { ionization } \\ \text { ners }\end{array}\right.$ Chambers Magnetic dipole
2)The experiment
a) The setup
3)Angular distribution

19Ne* Incoming beam 19Ne

$$
\left(\mathrm{i}_{\max }=2.10^{8} \mathrm{pps}\right)
$$

 c) ${ }^{19} \mathrm{Ne}^{*}$ exitation energy spectra

Comparison in the range of excitation energy of ${ }^{19} \mathrm{Ne}^{*}$ (5.6 MeV and 6.6 MeV)

Ph.D JC Dalouzy
Resolution in excitation energy 140 keV

This experiment
Resolution in excitation energy around 80 keV

Improvement in resolution by a factor ~ 2 with the new method !!!!!
1)Astrophysical context 2)The experiment 3)Angular distribution

1)Astrophysical context
2)The experiment
3)Angular distribution

1)Astrophysical context
2)The experiment
3)Angular distribution

1)Astrophysical context
2)The experiment
3)Angular distribution

J.G. Pronko and R.A. Lindgren

Nuclear Instruments and Methods (1972)

${ }^{19} \mathrm{Ne}^{*} \rightarrow \alpha+{ }^{15} \mathrm{O}$

$W(\theta)=\sum_{m \boldsymbol{K}} P(m) A\left(\boldsymbol{J l l} l^{\prime} \boldsymbol{s} \boldsymbol{K} \boldsymbol{K}\right) Q_{\mathbf{K}} P_{\mathbf{K}}(\cos \theta) \longrightarrow$ with $\mathrm{K}=\min \left(\mid+\mathrm{l}^{\prime}, 2 \mathrm{~J}_{\mathrm{i}}\right) \longrightarrow$ Spin where
$A\left(\boldsymbol{J l l} \mathbf{l}^{\prime} \boldsymbol{s} m \boldsymbol{K}\right)=(-1)^{|s-m|} \hat{\boldsymbol{l}}^{\prime} \hat{\boldsymbol{J}}^{2}\left(\boldsymbol{l l} \mathbf{l}^{\mathbf{0}} 00 \mid \boldsymbol{K} \mathbf{0}\right) \times(\boldsymbol{J J} m-m \mid \boldsymbol{K} \mathbf{0}) W\left(\boldsymbol{I J} \boldsymbol{l}^{\prime} \boldsymbol{J} ; \boldsymbol{s} \boldsymbol{K}\right)$

Conclusion

Experiment

Online analysis : experiment is successful! (range of interest covered with good statistics...)
The resolution is better with this new inelastic scattering method.
Access to spin and widths in a model independent way
About the fine analysis
Study of angular correlation theory \checkmark
Starting of the analysis of the CD-PAD data

CNRS/IN2P3

Thank you for your attention

A big thank to the collaboration !!!

GANIL (France) : F. Boulay, B. Bastin, F. De Oliveira, A. Lemasson, M. Rejmund, C. Schmitt, B. Jacquot, O. Kamalou, A.M. Sanchez Benitez, E. Traykov, C. Rodriguez, J. Grinyer, O. Sorlin, J.-C. Thomas and P. Delahaye.
University of Edinburgh (Scotland) : T. Davinson, V. Margerin, A. Estrade and P. J. Woods.
University of Santiago de Compostel (Spain) : D. Ramos.
University of York (England) : A. Laird.
IPN Orsay (France) : N. de Séréville.
University of Huelva (Spain) : G. Marquinez Duran and L. A. Acosta Sanchez.
LPC Caen (France) : L. Achouri.
Vinca Institute (Serbia) : P. Ujic.
Rez (Czech Republic) : J. Mrazek.
IFIN/HH (Romania) : F. Negoita, F. Rotaru, M. Stanoiu and C. Borcea .
Niewodniczanski Institute of Nuclear Physics (Poland) : M. Ciemala.

