Radioactivity, nuclear structure, chemists, and the abundances of the elements.

William B. Walters

Department of Chemistry and Biochemistry
University of Maryland
College Park MD 20742 USA

The University of Maryland is located inside the Capital Beltway around Washington, DC.

This is a short memorial tribute to our late daughter Kathy (1966-2013) who died after a four-year battle with ovarian cancer, a year ago in March, just prior to this meeting. She was a "gamer" and also an adult "mixed-gender" ice hockey player. Here, she is holding one of the trophies earned by the team which qualified for an international tournament in Toronto on one occasion.

Topics on my agenda

Chemists and Elemental abundances

${ }^{68} \mathrm{Ni}$ and neighbors for the structure people, along with a discussion of experimental methods

The coming end of the "big dip".

The "myth" of important experimental measurements

Who is eating Rh?
[Contribution from the Kent Chemical Laboratory of the University of Chicago.]
THE EVOLUTION OF THE ELEMENTS AND THE STABILITY OF COMPLEX ATOMS.
I. A NEW PERIODIC SYSTEM WHICH SHOWS A RELATION BETWEEN THE ABUNDANCE OF THE ELEMENTS AND THE STRUCTURE OF THE NUCLEI OF ATOMS.

By William D. Harkins.
Received November 6, 1916.
The Hydrogen-Helium Structure of Complex Atoms.
It has been shown in previous papers ${ }^{1}$ that the elements are very probably intra-atomic compounds of hydrogen. The hydrogen first forms helium, and this becomes a secondary unit of fundamental importance in the formation of all of the elements with atomic weights higher than its own.

Table III.-Average Composition of Meteorites Arranged According to the Periodic System.

毕		Group 2. Even.	Group 3.	Group 4. Even.	Group 5.	Group 6. Even.	Group 7. Odd.	Group 8.		
	Odd.							Even.	Odd.	Even.
2				$\begin{gathered} 6 \mathrm{C} \\ 0.04 \% \end{gathered}$		$\begin{gathered} 80 \\ 10.10 \end{gathered}$				
3	$\left\|\begin{array}{c} 11 \mathrm{Na} \\ 0.17 \% \end{array}\right\|$	$\begin{aligned} & 12 \mathrm{Mg} \\ & 3.80 \end{aligned}$	$\begin{aligned} & 13 \mathrm{Al} \\ & 0.39 \end{aligned}$	$\begin{aligned} & 14 \mathrm{Si} \\ & 5.20 \end{aligned}$	$\begin{array}{r} 15 P \\ 0.14 \end{array}$	$\begin{array}{r} 16 \mathrm{~S} \\ 0.49 \end{array}$				
4	$\left\lvert\, \begin{aligned} & 19 \mathrm{~K} \\ & 0.04 \% \end{aligned}\right.$	$\begin{aligned} & 20 \mathrm{Ca} \\ & 0.46 \end{aligned}$		22 Ti 0.01		$\begin{aligned} & 24 \mathrm{Cr} \\ & 0.09 \end{aligned}$	$\begin{gathered} 25 \mathrm{Mn} \\ 0.03 \end{gathered}$	$\begin{gathered} 26 \mathrm{Fe} \\ 72.06 \end{gathered}$	$\begin{aligned} & 27 \mathrm{Co} \\ & 0.44 \end{aligned}$	$\begin{aligned} & 28 \mathrm{Ni} \\ & 6.50 \end{aligned}$
	$\left\|\begin{array}{c} 29 \mathrm{Cu} \\ 0.01 \% \end{array}\right\|$									

Table III gives the average composition of iron and stone meteorites, arranged according to the periodic system. The numbers before the symbols represent the atomic numbers, and the numbers underneath give the percentage of the element. It will be noted that the even-numbered elements are in every case more abundant than the adjacent odd-numbered elements. The helium group elements form no chemical compounds,

Chemists have long recognized the relationship between elemental abundances......measured by analytical chemists and by geochemists, and the structure of the nucleus, even before the neutron was discovered.

The centennial of this paper in the Journal of the American Chemical Society 39, 856 (1917) is fast approaching. Perhaps an ACS symposium should be held to mark the occasion and celebrate the work of William Harkin. Journal of the American Chemical Society 39, 856 (1917).

As this is a "school" I would like to spend a bit of time describing some of the modern methods for studying the structure of nuclei.

Gammasphere and Gretina are modern detector systems.

Deep Inelastic reactions and fast fragmentation are methods for production

Gammasphere is 20 years old and consisted of ONE HUNDRED COMPTON SUPPRESSED DETECTORS

A lot of solid angle is lost to the BGO.

Figure 2.5: Schematic depiction of the layout of Gammasphere detector mod and of the types of interactions between γ rays and the detector material.

Prompt gamma rays, window 1, delayed gamma rays, isomers, beta decay in window 2.
Figure 2.7: The time with respect to an RF pulse for a selected group of γ-ray signals. Shaded region 1 depicts the "prompt" flash of radiation arriving with the beam pulse. Regions 2 and 3 indicate "delayed" transitions which arrive between beam pulses. Note that time increments backwards in this spectrum.
Hard wired triple coincidences.....old Gammasphere Digital Gammasphere, all data are written and then events reconstructed with whatever is needed. MUCH MORE SOFTWARE INTENSIVE.

Figure 2.10: The distribution of possible angles between detectors with the 100 detector setup used for this experiment. Horizontal lines depict the angular bins used for the construction of correlation curves. Bins 4 and 7 exhibited very low statistics and were omitted from the analysis reported in this work.

At the start of this work, the one sure gamma ray in ${ }^{64} \mathrm{Fe}$ was at 746 keV, discovered at ISOLDE in the decay of ${ }^{64} \mathrm{Mn}$ in 1997, the experiment that STARTED the whole ${ }^{68} \mathrm{Ni}$ craze. The reaction was ${ }^{64} \mathrm{Ni}+{ }^{238} \mathrm{U}$.

Figure 3.15: Representative spectra from coincidence gates on $2^{+} \rightarrow 0^{+}$and $4^{+} \rightarrow$ 2^{+}transitions in ${ }^{54} \mathrm{Fe}$ in prompt cube. The insets illustrate a systematic shift in the centroid position of the $1078-\mathrm{keV}$ peak.

Decay of Neutron-Rich Mn Nuclides and Deformation of Heavy Fe Isotopes

M. Hannawald, ${ }^{1}$ T. Kautzsch, ${ }^{1}$ A. Wöhr, ${ }^{2}$ W.B. Walters, ${ }^{3}$ K.-L. Kratz, ${ }^{1}$ V. N. Fedoseyev, ${ }^{4}$ V.I. Mishin, ${ }^{4}$ W. Böhmer, ${ }^{1}$ B. Pfeiffer, ${ }^{1}$ V. Sebastian, ${ }^{5}$ Y. Jading, ${ }^{6}$ U. Köster, ${ }^{7}$ J. Lettry, ${ }^{6}$ H.L. Ravn, ${ }^{6}$ and the ISOLDE Collaboration ${ }^{6}$

> Why GRETINA. In Gammasphere a lot of data are thrown away via the Compton Suppression. Each detector is surrounded by a BiGeO low-resolution detector system that detects Compton scattering and cancels that event.

PHYSICAL REVIEW C 74, 064313 (2006)
Yrast structure of ${ }^{64} \mathrm{Fe}$
N. Hoteling,,${ }^{1,2}$ W. B. Walters, ${ }^{1}$ R. V. F. Janssens, ${ }^{2}$ R. Broda, ${ }^{3}$ M. P. Carpenter, ${ }^{2}$ B. Fornal, ${ }^{3}$ A. A. Hecht,,${ }^{1,2}$ M. Hjorth-Jensen, ${ }^{4}$ W. Królas, ${ }^{3,5}$ T. Lauritsen, ${ }^{2}$ T. Pawłat, ${ }^{3}$ D. Seweryniak, ${ }^{2}$ X. Wang, ${ }^{2,6}$ A. Wöhr, ${ }^{6}$ J. Wrzesiński, ${ }^{3}$ and S. Zhu ${ }^{2}$

Fig. 2. A photograph of the actual array showing five GRETINA detector modules (20 crystals) mounted in a close-packed configuration.
(a)

(b)

Fig. 3. Schematic drawing of (a) four crystals packed in one module, two A-type crystals and two B-type crystals and (b) an individual crystal showing the electrical segmentation of its outer contact.

Fig. 4. A side-view drawing of the GRETINA detector module.

Each module is broken into 36 segments, 6×6. The Compton events are detected and added back to produce full-energy events.

VERY SOFTWARE INTENSIVE.

Nuclear Instruments and Methods in Physics Research A 709 (2013) 44-55

The performance of the Gamma-Ray Energy Tracking In-beam Nuclear Array GRETINA
S. Paschalis ${ }^{\text {a,* }}$, I.Y. Lee ${ }^{\text {a,k** }}$, A.O. Macchiavelli ${ }^{\text {a }}$, C.M. Campbell ${ }^{\text {a }}$, M. Cromaz ${ }^{\text {a }}$, S. Gros ${ }^{\text {a }}$, J. Pavan ${ }^{\text {a }}$, J. Qian ${ }^{\text {a }}$, R.M. Clark ${ }^{\text {a }}$, H.L. Crawford ${ }^{\text {a }}$, D. Doering ${ }^{\text {a }}$, P. Fallon ${ }^{\text {a }}$, C. Lionberger ${ }^{\text {a }}$, T. Loew ${ }^{\text {a }}$, M. Petri ${ }^{\text {a }}$, T. Stezelberger ${ }^{\text {a }}$, S. Zimmermann ${ }^{\text {a }}$, D.C. Radford ${ }^{\text {b }}$, K. Lagergren ${ }^{\text {b }}$, D. Weisshaar ${ }^{\text {c }}$, R. Winkler ${ }^{\text {c }}$, T. Glasmacher ${ }^{\text {c }}$, J.T. Anderson ${ }^{\text {d }}$, C.W. Beausang ${ }^{\text {e }}$

Configuration mixing and relative transition rates between low-spin states in ${ }^{68} \mathbf{N i}$

F. Recchia, ${ }^{1,{ }^{*}}$ C. J. Chiara, ${ }^{2,3}$ R. V. F. Janssens, ${ }^{3}$ D. Weisshaar, ${ }^{1}$ A. Gade,,${ }^{1,4}$ W. B. Walters, ${ }^{2}$ M. Albers, ${ }^{3}$ M. Alcorta, ${ }^{3}$
V. M. Bader, ${ }^{1,4}$ T. Baugher,,1,4 D. Bazin, ${ }^{1}$ J. S. Berryman, ${ }^{1}$ P. F. Bertone,,${ }^{3, \dagger}$ B. A. Brown, ${ }^{1,4}$ C. M. Campbell, ${ }^{5}$
M. P. Carpenter, ${ }^{3}$ J. Chen, ${ }^{6}$ H. L. Crawford, ${ }^{5}$ H. M. David, ${ }^{3,7}$ D. T. Doherty,,${ }^{3,7}$ C. R. Hoffman, ${ }^{3}$ F. G. Kondev, ${ }^{6}$ A. Korichi, ${ }^{3,8}$
C. Langer, ${ }^{1}$ N. Larson,,${ }^{1,9}$ T. Lauritsen, ${ }^{3}$ S. N. Liddick, ${ }^{1,9}$ E. Lunderberg, ${ }^{1,4}$ A. O. Macchiavelli, ${ }^{5}$ S. Noji, ${ }^{1}$ C. Prokop, ${ }^{1,9}$
A. M. Rogers, ${ }^{3, \ddagger}$ D. Seweryniak, ${ }^{3}$ S. R. Stroberg, ${ }^{1,4}$ S. Suchyta, ${ }^{1,9}$ S. Williams, ${ }^{1}$ K. Wimmer, ${ }^{1,10}$ and S. Zhu ${ }^{3}$

First Gretina paper in print from MSU, winner of the Macchiavelli prize

Here are spectra from DIS at Gammasphere See the gamma at 1139 keV .

FIG. 3. (Color online) Spectra from the DIS data. (a), (b) Prompt γ rays coincident with the $662-\mathrm{keV} \gamma$ ray and delayed ${ }^{208,209} \mathrm{Po}$ lines. (c) Delayed γ rays coincident with prompt $662-$ and $1139-\mathrm{keV}$ transitions. Inset to (b): decay curve for the $511-\mathrm{keV}$ line; random events associated with the next beam burst at $\sim 400 \mathrm{~ns}$ are excluded from the fit.

TABLE I. Intensities I_{γ} and $B(E 2)$ ratios $R\left(E_{\gamma}\right)$ (see text) for transitions from the 2_{2}^{+}state in ${ }^{68} \mathrm{Ni}$. The bottom row provides weighted averages of the values from the two data sets presented here (DIS and 2 nKO) and the earlier β-decay work [4].

Reaction	$I_{\gamma}(2743)$, $2_{2}^{+} \rightarrow 0_{1}^{+}$	$I_{\gamma}(1139)$, $2_{2}^{+} \rightarrow 0_{2}^{+}$	$I_{\gamma}(710)$, $2_{2}^{+} \rightarrow 2_{1}^{+}$	$R(1139)$	$R(710)$
DIS	$100(11)$	$47(10)$	$58(10)$	$38(9)$	346_{-225}^{+117}
2nKO	$100(3)$	$50(6)$	$52(9)$	$41(5)$	310_{-199}^{+100}
$\beta[4]$	$100(5)$	$42(3)$	$41(3)$	$34(3)$	244_{-152}^{+69}
Average	$100(3)$	$44(3)$	$43(3)$	$36(2)$	259_{-161}^{++3}

$2743-\mathrm{keV} E 2$ transition directly to the ground state. The presence of several branches offers an opportunity to explore the nature of the 0^{+}and 2^{+}states further by examining the properties of these transitions. Although an absolute determination of the $B(E 2)$ strengths would require knowledge of the half-life of the 2_{2}^{+}state, or a direct measurement of the $B(E 2)$ value for one of the transitions, the relative strengths can be compared to those predicted by different calculations.

In the DIS data, the spectrum in Figs. 3(a) and 3(b) was

FIG. 2. (Color online) Spectra from the 2 nKO data. (a) Delayed γ-ray spectrum recorded in the $\mathrm{CsI}(\mathrm{Na})$ scintillators in coincidence with implanted ${ }^{68} \mathrm{Ni}$ ions. Inset: decay curve for the $511-\mathrm{keV}$ line. (b) Prompt GRETINA spectrum coincident with the identification of a ${ }^{68} \mathrm{Ni}$ recoil and the detection of a delayed 511-keV γ ray in the CsI(Na) detectors.
${ }^{68} \mathrm{Ni}$ was also produced in two-neutron knockout (2 nKO) reactions at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory (NSCL). A secondary cocktail beam containing ${ }^{70} \mathrm{Ni},{ }^{69} \mathrm{Co}$, and ${ }^{71} \mathrm{Cu}$ ions was produced in the projectile fragmentation of a $140-\mathrm{MeV} / \mathrm{u}^{82} \mathrm{Se}$ beam on a $423-\mathrm{mg} / \mathrm{cm}^{2}{ }^{9} \mathrm{Be}$ production target located at the entrance of the A1900 fragment separator [18]. The momentum acceptance of the separator was set to 1%. Secondary beams with typical intensities of 10^{5} ions/s were delivered

Knocking out 2 neutrons leaves an excited ${ }^{68} \mathrm{Ni}$ nucleus, whose gamma rays can be studied in coincidence with the ${ }^{68} \mathrm{Ni}$ fragment

${ }^{82} \mathrm{Se}$ VERY FAST $+{ }^{9} \mathrm{Be}$....... ${ }^{70} \mathrm{Ni}$

${ }^{70} \mathrm{Ni}$ FAST $+{ }^{9} \mathrm{Be} \ldots \ldots{ }^{68} \mathrm{Ni}+2 \mathrm{n}$

Nuclear Structure Physics

- Complementary degrees of freedom are accessible
-Single-particle properties
» Nucleon knockout
» Transfer reactions
-Collective degrees of freedom

Direct reactions:

- nucleon-removing reactions (knockout)
- Nucleon-adding transfer reactions (light-ion and heavyion induced)

FIG. 1: (Color online) Identification spectrum for the reaction residues produced in ${ }^{9} \mathrm{Be}\left({ }^{61} \mathrm{~V},{ }^{A} \mathrm{Ti}\right) \mathrm{X}$ at a $90-\mathrm{MeV} / \mathrm{u}$ midtarget energy. All reaction residues are unambiguously identified by their energy loss, measured in the S800 ionization chamber, and their time of flight.

${ }^{82} \mathrm{Se}$ VERY FAST + ${ }^{9} \mathrm{Be}$....... ${ }^{61} \mathrm{~V}$

${ }^{61}$ V FAST $+{ }^{9}$ Be........... ${ }^{58} \mathrm{Ti}+2 \mathrm{n}+1 \mathrm{p}$

${ }^{61}$ V FAST $+{ }^{9} \mathrm{Be} \ldots \ldots{ }^{60} \mathrm{Ti}+1 \mathrm{p}$
${ }^{70} \mathrm{Ni}$ gammas, $5 \mathrm{kev} / \mathrm{bin}$, top from 2 n KO from incoming ${ }^{72} \mathrm{Ni}$, bottom ${ }^{70} \mathrm{Ni}$ made from incoming ${ }^{73} \mathrm{Cu}$.

1866-keV gamma ray was identified in one decay study, but not in another decay paper. The other high-energy gamma rays were not previously seen.

These are the five ${ }^{68} \mathrm{Ni}$ low-energy levels from
Tsunoda et al., that will serve as a basis for an analysis of the level structure of ${ }^{69} \mathrm{Cu}$. These graphs show the deformation from wavefunction components from Monte Carlo Shell Model calculations. Novel shape evolution in exotic Ni isotopes and Type II shell evolution

Yusuke Tsunoda, ${ }^{1}$ Takaharu Otsuka, ${ }^{1,2,3}$ Noritaka Shimizu, ${ }^{2}$ Michio Honma, ${ }^{4}$ and Yutaka Utsuno ${ }^{5}$

prolate arXiv:1309.5851v1 Accepted PRC?

These seem to be the "agreed-on levels in magic ${ }^{66} \mathrm{Ni}$. Guess what??? Below 3 MeV , there are three 0^{+}levels and two 2^{+}levels and a single 3^{+}level.

$8+\quad 5175$
$6+\quad 4811$

Two more points, first magnetic moment for the $\mathrm{p}_{1 / 2}$ ground state has been measured and found to lie close to the Schmidt single-particle limit.

Second, Spin orbit splitting is restored in ${ }^{67} \mathrm{Ni}$ to nearly the same value as it was in ${ }^{49} \mathrm{Ca} . \ldots .$. .before EIGHT J $-\mathrm{L}+1 \mathrm{f}_{7 / 2}$ protons were added.

So, the tensor interaction is not the whole story in nuclear structure.

TABLE I. Experimental magnetic moments $\mu_{\text {expt }}$ and singleparticle values $\mu_{\text {sp }}$ and their difference $\Delta \mu$ for odd-proton (π) and odd-neutron (ν) nuclei in the Pb region.

		$\mu_{\text {expt }}$	$\mu_{\text {sp }}$	$\Delta \mu$
${ }^{209} \mathrm{Bi}$	$\pi h_{9 / 2}$	4.11	2.62	1.49
${ }^{209} \mathrm{Bi}$	$\pi i_{13 / 2}$	$2.78(10)^{\mathrm{a}}$	3.56	-0.78
${ }^{207} \mathrm{Tl}$	$\pi s_{1 / 2}^{-1}$	1.87	2.79	-0.92
${ }^{207} \mathrm{Tl}$	$\pi d_{3 / 2}^{-1}$	$0.76(19)^{\mathrm{b}}$	0.12	0.64
${ }^{209} \mathrm{~Pb}$	$\nu g_{9 / 2}$	-1.47	-1.91	0.44
${ }^{207} \mathrm{~Pb}$	$\nu p_{1 / 2}^{-1}$	0.59	0.64	-0.05
${ }^{207} \mathrm{~Pb}$	$\nu f_{5 / 2}^{-1}$	$0.79(3)$	1.37	-0.58
${ }^{207} \mathrm{~Pb}$	$\nu i_{13 / 2}^{-1}$	$-1.01(3)^{\mathrm{c}}$	-1.91	0.90

All corrections have been collated in Table II. For the $p_{3 / 2}$ proton in ${ }^{69} \mathrm{Cu}$, the calculated correction to the singleparticle magnetic moment is large, $-0.94 \mu_{N}$, while for the $p_{1 / 2}$ neutron in ${ }^{67} \mathrm{Ni}$ it is small, $-0.18 \mu_{N}$. For the former, the result is in good agreement with experiment, while for the latter, the correction, although small, is a factor of 4 larger than required by experiment. The same phenomenon is found in the Pb region, where for the neutron $p_{1 / 2}$ state the calculated $[12,14,15]$ correction is of order $\sim 0.2 \mu_{N}$, compared with the experimental value of $0.05 \mu_{N}$. The small changes observed for $p_{1 / 2}$ nuclei are related to the absence of nearby low angular momentum negative parity orbitals. The fact that, in ${ }^{67} \mathrm{Ni}$, even this small correction is overestimated, provides evidence for the strength of the subshell closure at $N=40$ in ${ }^{68} \mathrm{Ni}$.

The first fully on-line use of the angular distribution of beta emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes ${ }^{67} \mathrm{Ni}\left(\nu p_{1 / 2}^{-1} ; 1 / 2^{-}\right)$and ${ }^{69} \mathrm{Cu}\left(\pi p_{3 / 2}^{1} ; 3 / 2^{-}\right)$are measured to bo $+0.601(5) \mu_{N}$ and $+2.84(1) \mu_{N}$, respectively, revealing only a small deviation from the neutron $p_{1 / 2}$ single-particle value in the former and a large deviation from the proton $p_{3 / 2}$ single-particle value in the latter. Quantitative interpretation is given in terms of core polarization and meson-exchange currents.

Volume 85, Number 7
PHYSICAL REVIEW LETTERS
14 August 2000

First On-Line Beta-NMR on Oriented Nuclei: Magnetic Dipole Moments of the $\left(\nu p_{1 / 2}\right)^{-1} 1 / 2^{-}$Ground State in ${ }^{67} \mathrm{Ni}$ and $\left(\pi p_{3 / 2}\right)^{+1} 3 / 2^{-}$Ground State in ${ }^{69} \mathrm{Cu}$
J. Rikovska,* T. Giles, N. J. Stone, K. van Esbroeck, ${ }^{\dagger}$ G. White, and A. Wöhr Department of Physics, Oxford University, Parks Road, OX1 3PU Oxford, United Kingdom
M. Veskovic

Department of Physics, University of Novi Sad, Novi Sad, Yugoslavia

I. S. Towner

Physics Department, Queen's University, Kingston, Ontario, K7L 3N6, Canada
P. F. Mantica, J.I. Prisciandaro, and D. J. Morrissey

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
V. N. Fedoseyev and V.I. Mishin

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Russia
U. Köster

EP Division, CERN, CH 1211 Geneva 23, Switzerland
W. B. Walters

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
and the NICOLE and ISOLDE Collaboration
(Received 17 April 2000)

Measured moment 0.60 (5) Single-particle 0.64

FIG. 3. (Color online) The energy of ${ }^{68} \mathrm{Ni}$ as a function of a given ellipsoidal shape. The energy was obtained by a HartreeFock calculation constrained by the quadrupole moment for the Hamiltonian being used. Each tick along the axis corresponds to an increment of $50 e \mathrm{fm}^{2}$ in the magnitude of the quadrupole moment.

The transitions that are weak or not observed are those from the prolate levels on the left into the oblate and spherical levels on the right. The conclusion is that the $7 / 2$ - level, down in the well has not mixed with the oblate 7/2' level at 1872 keV .

人 Core coupled oblate levels

$K=1 / 2-$ prolate intruder

(3/2)	681
(1/2)	492
494(24) ms	

$\begin{array}{llll}7 / 2^{-} & 0 \\ & { }_{27}^{67} \mathrm{Co}_{40} & 0^{+} & 0 \\ 68 \mathrm{Ni}^{+} & \\ \end{array}$

3-particle spherical levels
$\left(1 / 2^{-}, 3 / 2^{-}\right) \quad 1859$
(5/2-) 1252
$\underline{0^{+} 1604}$

$$
11
$$

		11+ 7007									
		12^{+}	6940								
13^{-}	6660									10^{+}	6777
12-	6550	12^{-}	6584	12^{-}	6462						

There is a GRETINA paper due out momentarily showing the levels of ${ }^{60} \mathrm{Ti}$. The $\stackrel{(10+)}{ } 4628$ structure shown below
$8+\quad 5175$

seems to rule out the wild notions of big-time deformations for ${ }^{60} \mathrm{Ca}$.

$(8+)$	3623
$(6+)$	3528
$(7-)$	3423

$8+\quad 4398$

7- 4089

5- 3541

4+ 3185

$6+$	2842
$5(-)$	2841

$2014 \quad 2009 \quad 2006$
$4+\quad 1716$
$4+\quad 1763$
(0+) 1442

$0+$	2670
$0+$	2437

$4+\quad 2419$

4+ 2153

$2+$	850
$0+$	
60	
28	

$22 \quad 38$
$2+\quad 746$
2+ 446 1999

$0+\quad 1665$

$6+\quad 1443$

$0+$	938
$2+\quad 864$	

4+ 1013

7- 3369

$5-$	2814
$8+$	2748

$8+\quad 2336$
$6+\quad 1782$
$4+\quad 1638$
$4+\quad 745$

Here the three magic Ti nuclei, $\mathrm{N}=20,28,32$, each with two protons coupled to the Ca core. For ${ }^{60} \mathrm{Ti}_{38}$, it is possible to observe "some mixing" with the $\mathrm{g}_{9 / 2}$ neutron broken pair from $\operatorname{across} \mathrm{N}=40$.

$$
\left(\nu f_{7 / 2}\right)^{2} 2+4+6+
$$

$\underline{2+\quad 1495}$
$6+\quad 2657$

\qquad

2+ $\quad 1555$

$2+\quad 1129$

$22 \quad 20$

$22 \quad 36$
$22 \quad 38$

Now, I would like to return to a topic that is approaching 20 years old that is not quite yet resolved, but, at least one aspect of possible resolution seems to be at hand.

This chart was a hot topic about 18 years ago and is a composite of 2 charts shown next. I call it "the big dip"

K.-L. Kratz, B.

Pfeiffer et.al

Fig. 2. Global r-abundance fits with superpositions of 16 time-dependent r process components, calculated with the $\mathrm{n}_{n}-\tau$ conditions for $\mathrm{T}_{9}=1.35$ given in Fig. 1 of [11]. For the upper part, the S_{n} values are taken from ETFSI-1 [4], whereas for the lower part the new ETFSI-Q [13] mass formula was applied

The "mother paper" for the shell quenching and filling of the big dip is excerpted here. The source of the differences are shown on the next page. Namely, the calculated overbinding of the $\mathbf{h}_{11 / 2}$ neutrons for $\mathbf{K r}, \mathbf{Z r}, \mathbf{M o}$, and $\mathbf{R u}$. The net effect of "shell-quenching" has been to maintain the straight line behavior for neutron binding.

Influence of shell-quenching far from stability on the astrophysical r-process
B. Chen ${ }^{\text {a }}$, J. Dobaczewski ${ }^{\text {b }}$, K.-L. Kratz ${ }^{\text {c }}$, K. Langanke ${ }^{\text {a }}$, B. Pfeiffer ${ }^{\text {c }}$, F.-K. Thielemann ${ }^{\text {d }}$, P. Vogel ${ }^{e}$

Physics Letters B 355 (1995) 37-44

Fig. 3. r-process paths in the $80 \leq A \leq 140$ mass region. In the upper part the result is shown for the FRDM mass model. The large gap before the shell closure at $N=82$ (also existing when using the ETFSI and SIII masses) causes the deep trough before the $N_{r, \odot}$ peak at $A=130$ (see upper part of Fig. 2). The lower part shows the same picture, but with masses of spherical nuclei around $N=82$ being replaced by masses from HFB calculations with the SkP force. Nuclei in the valley of stability are displayed as full squares. The population of nuclei during the r -process is shown in form of open squares (nuclei with more than 10% of the population of an isotopic chain) or open squares with a cross (nuclei with the maximum abundance in an isotopic chain).

Fig. 2. r-process abundance fits obtained with ten equidistant neutron-density components from $10^{20} \mathrm{~cm}^{-3}$ to $3 \times 10^{24} \mathrm{~cm}^{-3}$
according to Fig. 1. In the upper part, the result is presented for neutron-density components from $10^{20} \mathrm{~cm}^{-3}$ to $3 \times 10^{24} \mathrm{~cm}^{-3}$
according to Fig. 1. In the upper part, the result is presented for FRDM [10] masses with the $T_{1 / 2}$ and P_{n} values from the QRPA calculations according to Ref. [11]. In the lower part, masses
of spherical nuclei around $N=82$ have been replaced by masses calculations according to Ref. [11]. In the lower part, masses
of spherical nuclei around $N=82$ have been replaced by masses from HFB calculations with the Skyrme force SkP. The quenching of the $N=82$ shell gap (see Fig. 4) leads to a filling of the abundance troughs around $A \simeq 120$ and 140 , and to a better overall reproduction of the heavy-mass region.

From Möller, Nix and Kratz, ANDT 66, 131 (1997).

Observe there is NO leveling for the Sn nuclides!!!!

As $\sim 2 \mathrm{MeV}$ is the critical binding energy for many temperatures used in rprocess abundances, it is the leveling off for $\mathbf{~} \mathbf{S r}, \mathbf{Z r}$ and Mo that causes the big dip. Ru is always tight enough bound to move to the $\mathrm{N}=82$ closed shell, and Kr reaches 2 MeV far from stability. Hence the problem lies with $\mathbf{S r}, \mathbf{Z r}$, and Mo. The problem starts above $\mathrm{N}=75$ for Zr and adjacent nuclei. Note that these are singleneutron separation energies, those that are needed in calculations for photodisintegration in the $(\gamma, n)=(n, \gamma)$ equilibriium.

Fig. 4. The two-neutron separation energy $S_{2 n}$ is plotted as a function of of the mass number A for krypton isotopes. The dripline is reached as soon as this quantity is negative. The different predictions are from the mass model of Duflo and Zuker, the Extended Thomas-Fermi model (ETFS'I), the extended Thomas-Fermi model with shell quenching (ETFSI-Q), the finite range droplet model (FRDM), and the finite range liquid-drop model (FRLDM).
\square Heaviest known yrast structures \quad Heaviest known half lives

Mo Cd Sn one-neutron

This is a clean plot of the data on the previous page.

Mo Cd Sn one-neutron

This is a plot showing the extrapolation of the 1 -neutron separation energies. What is seen is that for ${ }^{117} \mathrm{Mo}_{75}$, the 2MeV separation energy at $\mathbf{N}=\mathbf{7 5}$ would fall in the middle of the "big dip" and....... completely destroy the calculated "big dip? However, misbehavior can be seen for Ru and Pd as \mathbf{N} increases, so there may be no justification for a straight line.

There could be isomers in both Ru and Pd . These 1-neutron separation energies are never going to play a role in the big dip as they never reach 2 MeV before the $\mathrm{N}=82$ closed shell. But, if there is "enhanced binding" in those $\mathrm{N}=70$ to 78 nuclei, then, indeed, the straight line for Mo may not be supported, EVEN if it is difficult to measure the Mo masses, new data for Ru and Pd would be helpful.
\square Heaviest known yrast structures \quad Heaviest known half lives

686 on left 693.3 below RIKEN DATA
So, 506 and 674 for ${ }^{122} \mathbf{P d}$ and 597 for ${ }^{124} \mathrm{Pd}$ maybe guess $\mathbf{7 2 0}$ for $\mathbf{4}^{+}$to $\mathbf{2}^{+}$in ${ }^{124} \mathrm{Pd}$?

	$E_{x}(\mathrm{keV})$	$T_{1 / 2}$	$E_{\gamma}(\mathrm{keV})$	$I_{\gamma}(\%)$	$J_{i}^{\pi} \rightarrow J_{f}^{\pi}$
${ }^{128} \mathrm{Pd}$	1311.4		1311.4	$100(29)$	$\left(2^{+}\right) \rightarrow 0^{+}$
	1815.8		504.4	$88(24)$	$\left(4^{+}\right) \rightarrow\left(2^{+}\right)$
	2075.9		260.1	$74(20)$	$\left(6^{+}\right) \rightarrow\left(4^{+}\right)$
	2151.0	$5.8(8) \mu \mathrm{s}$	75.1	$28(10)$	$\left(8^{+}\right) \rightarrow\left(6^{+}\right)$
${ }^{126} \mathrm{Pd}$	693.3		693.3	$100(5)$	$\left(2^{+}\right) \rightarrow 0^{+}$
	1481.0		787.7	$57(4)$	$\left(4^{+}\right) \rightarrow\left(2^{+}\right)$
	2023.4	$0.33(4) \mu \mathrm{s}$	542.4	$52(3)$	$\left(5^{-}\right) \rightarrow\left(4^{+}\right)$
			1330.2	$40(3)$	$\left(5^{-}\right) \rightarrow\left(2^{+}\right)$
	2109.7	$0.44(3) \mu \mathrm{s}$	86.2	$21(2)$	$\left(7^{-}\right) \rightarrow\left(5^{-}\right)$

PRL 111, 152501 (2013)

One point is that if it has been possible to accumulate enough atoms or Pd and Rh to obtain these data, then there should be enough atoms of Ru , Tc , and Mo to obtain masses much nearer to $\mathrm{N}=82$. It has taken 10 years since we reported the structure of ${ }^{120} \mathrm{Pd}$ to move on to the shell. It is possible to see the broken $g_{9 / 2}$ pair in both ${ }^{96} \mathrm{Pd}_{50}$ and ${ }^{128} \mathrm{Pd}_{82}$ and the changes brought about by adding 32 neutrons to the nucleus.

Mark Stoyer and I did some work trying to see if their alphainduced mass-gated fission data could be extended beyond ${ }^{120} \mathrm{Pd}$. The observed numbers suggest more collectivity than found in isotonic Xe or symmetric Pd for ${ }^{122,124,126} \mathrm{Pd}$, in spite of the nearly identical structures for ${ }^{126} \mathrm{Pd}$ and ${ }^{128} \mathrm{Cd}$.
ELSEVIER
Spectroscopy of neutron-rich Pd and Cd isotopes near $\mathrm{A}=120$
M.A. Stoyer ${ }^{\text {a* }}$, W.B. Walters ${ }^{\text {a }}$, C.Y. Wu ${ }^{\text {b }}{ }^{\text {D. Cline }}{ }^{\text {b }}$, H. Hua ${ }^{\text {b }}$, A.B. Hayes ${ }^{\text {b }}$, R. Teng ${ }^{\text {b }}$, R.M. Clark ${ }^{c}$, P. Fallon ${ }^{c}$, A. Goergen ${ }^{c}$, A.O. Macchiavelli ${ }^{c}$, K. Vetter ${ }^{c}$, P. Mantica ${ }^{d}$, and B. Tomlin
Pd-122
Pd-124
Pd-126

IBM	EXP	Pd	Xe	$\begin{aligned} & \therefore=- \\ & x_{i} \end{aligned}$	IBM EXP Pd Xe			\cdots :-	IBM EXP Pd Xe		
				$0:=$	1550	1416	1440	0	1940	1542	1731
1250	1234	1229	1205	${ }_{2}$				2 -			
	1180			597					693		
	506								840		
525	517	512	536	2	645	666		$2:$	84	863	847

PHYSICAL REVIEW C 70, 034314 (2004)

One point is that if it has been possible to accumulate enough atoms or Pd and Rh to obtain these data, then there should be enough atoms of Ru , Tc , and Mo to obtain masses much nearer to $\mathrm{N}=82$. It has taken 10 years since we reported the structure of ${ }^{120} \mathrm{Pd}$ to move on to the shell. It is possible to see the broken $g_{9 / 2}$ pair in both ${ }^{96} \mathrm{Pd}_{50}$ and ${ }^{128} \mathrm{Pd}_{82}$ and the changes brought about by adding 32 neutrons to the nucleus.

Mo Cd Sn one-neutron

My point is that if enough Pd can be made at RIKEN to reach ${ }^{128} \mathrm{Pd}$, surely it will soon be possible measure Cd , and Pd masses out to $\mathbf{N}=82$. And most likely, enough to go out to ${ }^{121} \mathrm{Ru}_{77}$, far enough to see if the "bump" has any chance to exist for Mo and Zr.

From Möller, Nix and Kratz, ANDT 66, 131 (1997).

Now I would like to make a few comments about some occasional exaggerations about the importance of nuclear data for r -process abundance calculations.

Consider the claim that uncertainty in the values for the neutron capture of ${ }^{130} \mathrm{Sn}$ will have huge effects on the calculated yields of Pb region nuclei!!!! The neutron density when Pb is being made is probably $\sim 10^{26} \mathrm{n} / \mathrm{cm}^{3}$. Where is the r-process at that density?

At $10^{26}, \mathrm{Ag}$ is around $\mathrm{A}=131$

At $10^{26}, \mathrm{Cd}$ is around $\mathrm{A}=134$. At what neutron density is ${ }^{130} \mathrm{Cd}$ dominant, down around 10^{24} ? But when the flux is THAT low, very few Pb region nuclei will be produced.

$3 \times 10 \wedge 20$ 10^22 10^23 10^24 10^25 10^26 10^27 10^28

Abundances after β - and α-Decays

Fig. 2. Results of time-dependent r-process calculations with $n_{\mathrm{n}}=10^{20}, 10^{22}$, and $10^{24} \mathrm{~g} \mathrm{~cm}^{-3}$ at $T=1.35 \times 10^{9} \mathrm{~K}$ for duration times τ of 1.2 (upper part), 1.7 (middle), and 2.1 s (lower part), respectively, in comparison with solar r-process abundances [34].

Nuclear structure studies for the astrophysical r-process
B. Pfeiffer ${ }^{\text {a,* }}$, K.-L. Kratz ${ }^{\text {a }}$, F.-K. Thielemann ${ }^{\text {b }}$, W.B. Walters ${ }^{\text {c }}$
${ }^{\text {a }}$ Institut fïr Kernchemie, Universität Mainz, D-55128 Mainz, Germany
${ }^{\mathrm{b}}$ Departement für Physik und Astronomie, Universität Basel, Switzerland ${ }^{\text {c }}$ Department of Chemistry, University of Maryland, USA
Received 3 April 2001; revised 1 June 2001; accepted 5 June 2001

Fig. 5.-Comparison of meteoritic SS r-process-only isotopic abundances to weighted sums of r-process computations for different neutron densities ranges. The SS abundances (black points; Käppeler et al. 1989; Wisshak et al. 1998; O'Brien et al. 2003; see listing in Cowan et al. 2006) are on the standard meteoritic scale in which $\log N_{\mathrm{Si}}=6$. The four panels show from top to bottom the effect of incorporating progressively higher ranges of n_{n}. The top panel predictions span $20.0 \leq \log n_{n} \leq 22.0$, adequate only for matching the lightest isotopes. The bottom three panels successively add more neutron density components weighted to simultaneously match the greatest mass range of nuclei. The values displayed here are ones taking into account α - and β-decays of nuclei back to stability.

The Astrophysical Journal, 662:39-52, 2007 June 10
© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

EXPLORATIONS OF THE r-PROCESSES: COMPARISONS BETWEEN CALCULATIONS AND OBSERVATIONS OF LOW-METALLICITY STARS
Karl-Ludwig Kratz, ${ }^{1,2}$ Khalll Farouvi, ${ }^{2}$ Bernd Pfeiffer, ${ }^{2}$ James W. Truran, ${ }^{3}$
Christopher Sneden, ${ }^{4}$ and John J. Cowan ${ }^{5}$
Received 2006 August 24; accepted 2007 March 1

The point is that by the time any significant quantity of ${ }^{130} \mathrm{Sn}$ is produced, the neutron density is far to low to carry those nuclei toward Pt. The sum of the mean lives for ${ }^{130} \mathrm{Cd}$ and ${ }^{130} \mathrm{In}$ is $\sim 600 \mathrm{~ms}$. If the speeding up argument is sound, the r-process is over before there is any significant quantity of ${ }^{130} \mathrm{Sn}$. Stated another way, when the neutron density is high, there are few ${ }^{130} \mathrm{Sn}$ nuclei, by the time there are a lot of ${ }^{130} \mathrm{Sn}$ nuclei, there are few neutrons.

PHYSICAL REVIEW C

Distribution of Mass in the Spontaneous Fission of ${ }^{256} \mathrm{Fm}^{\dagger}$

K. F. Flynn, E. P. Horwitz, C. A. A. Bloomquist, R. F. Barnes, R. K. Sjoblom,
P. R. Fields, and L. E. Glendenin

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 20 December 1971)
Now I want to comment on the "rare-earth bump and fission recycling". The left graph is selected because is shows so clearly that the bump centers at $\mathbf{A}=\mathbf{1 6 0}$, and the graph below shows that the heavy fission mass bump would center at $\mathbf{A}=\mathbf{1 3 9}$. Maybe the "fuzz" on the heavy side of the $\mathrm{A}=132$ peak could come from fission, most likely from slow beta decay.

Fig. 2. Results of time-dependent r-process calculations with $n_{\mathrm{n}}=10^{20}, 10^{22}$, and $10^{24} \mathrm{~g} \mathrm{~cm}^{-3}$ at $T=1.35 \times 10^{9} \mathrm{~K}$ for duration times τ of 1.2 (upper part), 1.7 (middle), and 2.1 s (lower part), respectively, in comparison with solar r-process abundances [34].

FIG. 4. Average masses of light and heavy groups as a function of the masses of the fissioning nucleus.

Henry Stimson, Sec. of War.

The first 9 chapters are an excellent description of the history of nuclear science in the early $20^{\text {th }}$ century that led to the discovery of fission.

The last 9 chapters are devoted to describing the human, scientific, and engineering activities that actually produced and delivered the bomb.

Delayed neutrons and the r-process
I checked with Karl-Ludwig and he confirmed the notion that the neutron to see ratio varies downward from100 when making U and Th to around 30 when making $\mathrm{A}=130$.

As with the control of a reactor, delayed neutrons reflect nuclei produced slightly earlier.

So, even if every irradiated "seed" nucleus was spraying out 1 delayed neutron each, the net increase might only be 5%. In other words, 3% of the nuclei have been irradiated, and the delayed neutrons come from a time slightly earlier. Not a big deal????

Wigner designed Pu reactors, Wheeler built them. Wheeler was cautions and "worried" about a fission product "poison". He drilled in large unoccupied corners. When the ${ }^{135} \mathrm{Xe}$ poison shut the reactor down, it was possible to fill out the corners and stuff them with U and get going again. The delay was about 3 months for the drilling. By December 1944 , fuel rods were being sent to Seaborg's robotic separators at full speed.

Now, I want to ask about the low value for Rh and Ag in old halo stars? Fermi used Rh as his flux monitor in the Rome experiments of 1936/7.

Figure 1. The heavy element abundance patterns for CS 22892-052 compared with the solar system r-process abundance distribution (solid line) [7]

Figure 5. Element abundance patterns of a sample of r-process element enriched stars (points), with the solar r-process pattern scaled to each star's Eu abundance (solid lines). The agreement between the solar pattern and the stellar abundances is excellent for elements $Z \approx 56-72$. However, the agreement with the solar pattern of the lighter elements ($Z \approx 38-40$) is not as good. References for the abundances: HD 221170Ivans et al (2006); CS 31082-001—Hill et al (2002); CS 22892-052—Sneden et al (1996); HE 1523-0901—Frebel et al (2007). (Figure adapted from Frebel and Norris 2013.)

These are usually seen in a log plot where they all look equal. Even in a linear plot, these abundances are, more or less equal, varying in this plot by a factor of 3 .

If Rh is large in Solar, does this mean the main source is the s-process?

121,123Sb

The s-process in low-metallicity stars - II. Interpretation of
high-resolution spectroscopic observations with asymptotic giant branch models
S. Bisterzo, ${ }^{1 \star}$ R. Gallino, ${ }^{1,2}$ O. Straniero, ${ }^{2}$ S. Cristallo ${ }^{3}$ and F. Käppeler ${ }^{4}$

Table 5 - continued

C. nappeler

NEUTRON CROSS SECTIONS VOLUME II, CURVES

D.I. Garber and R.R. Kinsey

January 1976

INFORMATION ANALYSIS CENTER REPORT

NATIONAL NEUTRON CROSS SECTION CENTER
BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

The point is that the capture cross sections for Rh are HIGH!!!

Here, it is possible to see that ${ }^{103} \mathrm{Rh}$ is "protected" in the r-process by 40-day ${ }^{103} \mathrm{Ru}$, so any neutrons from late beta-delayed processes will have little effect. Moreover, ${ }^{107} \mathrm{Ag}$ is well protected by six millionyear ${ }^{107} \mathrm{Pd}$.

My question is

 "how are the ${ }^{103} \mathrm{Rh}$ and Ag being eaten in the old halo stars?"The large cross section for ${ }^{103} \mathrm{Rh}$ and short daughter half life made ${ }^{104} \mathrm{Rh}$ an excellent flux monitor for Fermi in his Rome experiments when he was irradiating "everything" with neutrons.

