

Reaction Rates for Explosive Nuclear Synthesis

> Alexandra Spiridon 12 March 2014

Cyclotron Institute Texas A&M University

X-Ray Bursts – short intro

- Most frequent thermonuclear explosions in the universe
- Over 90 Galactic X-ray bursting sources detected to date
- Provide a unique window into the physics of neutron stars
- With the recent advances in observational astrophysics there is a large amount of data
- Problem:
 - Need a reliable nuclear physics database to interpret it
 - In particular, need good understanding of the rpprocess

X-Ray Bursts – short intro

- The critical nuclear data in the rp-process:
 - nuclear masses
 - β-decay rates
 - nuclear reaction rates
- Most nuclei in rp-process are unstable
- Indirect methods have been used
- Large uncertainties
- Radioactive beams needed

MDM-Oxford detector

- Oxford determine
 - Gridded in chamber proportion
 - Plastic sc PMTs for

LINTRAL

New anode with Micromegas pads

X-Ray bursts $- {}^{27}Si(p,\gamma){}^{28}P$

- ²⁷Si(p,g) bottleneck
 - T_{1/2}=4.15 s ; no experimental data
- Use indirect method, theoretical estimations until radioactive beam available:
 - ²⁸P energy levels
 - Reaction Q-value
 - Spectroscopic data from mirror nucleus ²⁸AI

Mirror system $^{27}AI(n, \gamma)^{28}AI$

- Study of ²⁷Al+n -> ²⁸Al with MDM spectrometer
 - Beam of ¹³C @ 12 MeV/n on ²⁷Al target
 - Get angular distribution from elastic scattering ²⁷Al(¹³C,¹³C)²⁷Al
 - Fit distribution to obtain Optical Potential Model parameters
 - Use OMP parameters to predict angular distribution for transfer reaction ²⁷AI(¹³C,¹²C)²⁸AI
 - Compare with experimental data to extract ANC

TAMU Multipole-Dipole-Multipole (MDM)

²⁷AI(¹³C,¹³C)²⁷AI

²⁷AI(¹³C,¹³C)²⁷AI

V=71.231 W=14.195 r_v =1.046 r_w =1.213 a_v =0.537 a_w =0.938 Rc=1.764 χ 2=10.17

Future plan

- Take data for ²⁷Al(¹³C,¹²C)²⁸Al May 2014
- Test Oxford upgrades June 2014
- If successful, measure ¹³C (²⁷Al, ²⁸Al) ¹²C
- ²⁷Si beam Fall 2014 (hopefully?)

Thank you for your attention!