

11th Russbach School on Nuclear Astrophysics (Mar. 12, 2014)

# **Decay spectroscopy relevant to the r-process nucleosynthesis**

Shunji NISHIMURA ( RIKEN, Japan )



Gamma-ray detection system (Ge: EURICA)



Beta-counting system (Si: WAS3ABi)



# How is the elements created in the universe?



Solar Abundance



r-process peaks (A~80, 130, 195) are associated to very neutron-rich magic nuclei N = 50, 82, 126

**Abundance Patterns in Galactic Halo Stars** (*The origin of about half of elements > Fe*) **Open question: Where does the r process occur ?** 





We lack physical reliable data for the most neutron-rich nuclei.

### Very Neutron-Rich Nuclei (Far from the stability..)



### Nuclear Parameters (Decay Spectroscopy)

### First E(2+) for even-even nuclei



# Location of Decay Station at RIBF



# **Beam Production at RIBF**



The implantation of an identified RI is associated with the following β-decay events that are detected in the same silicon pixel (DSSSD).



# Decay Spectroscopy at RIBF

- Production of Isotopes
  - Isotope separation by BigRIPS
    - Cocktail beam ( $20 \sim 40$  isotopes with Z  $\pm 3 \sim 5$  )
    - Secondary beam intensity : 10 ~ 1k cps
  - Particle identification
    - Brho, Time-of-Flight, dE, and E
    - Issue of charge states in heavy RI ( A > 170 )
- Transportation
  - RI Beam energy  $\sim 150$  MeV/u
    - Suitable for short-lived nuclei / isomer ( > 50ns)
    - Adjust degrader to optimize the range in active stopper.

### Beta-counting system: WAS3ABi

(<u>Wide-range Active Silicon-Strip Stopper Array</u> for <u>Beta and ion detection</u>)

RIKEN/IBS/TU München









- (a) 14,000pixels + Plastic (Qbeta) ... 2012 U-beam
- (b) 12,000pixels + Plastic (Fast timing) ... 2013 U-beam
- (c) 7,200 pixels + 10 x SSD (Qbeta) WAS3ABi + SIMBA

... 2013 Xe-beam

(d) 16,000 pixels + Plastic (Veto)

.. 2013 Xe-

# Event association of isotopes and subsequent beta-decays in WAS3ABi





## Timing information is used for reconstruction of hit position.



Heavy-ion ... ~ 1GeV ~ 10 GeV Beta-ray ... 20 keV ~ 3 MeV

# Decay curve and T<sub>1/2</sub>

| 97¥         | 98¥                    | 99¥                      | 100¥                      | 101¥                      |  |
|-------------|------------------------|--------------------------|---------------------------|---------------------------|--|
| 3.75 S      | 0.548 S                | 1.470 S                  | 735 MS                    | 0.45 S                    |  |
| β-: 100.00% | β-: 100.00%            | β-: 100.00%              | β-: 100.00%               | β-: 100.00%               |  |
| β-n: 0.058% | β-n: 0.33%             | β-n: 1.90%               | β-n: 0.92%                | β-n: 1.94%                |  |
| 96Sr        | 97Sr                   | 98Sr                     | 99Sr                      | 100Sr                     |  |
| 1.07 S      | 429 MS                 | 9.653 S                  | 0.269 S                   | 202 MS                    |  |
| β-: 100.00% | β++100.00%<br>β-n≤ 0.0 | β-: 100.00%<br>β-n: 0.25 | β-: 100.00%<br>β-n: 0.10% | β-: 100.00%<br>β-n: 0.78% |  |
|             |                        |                          |                           |                           |  |
| 95Rb        | 96Rb                   | 97.                      | 8Rb                       | 99Rb                      |  |
| 95Rb        | 96Rb                   | 97.                      | BRb                       | 99Rb                      |  |
| 377.5 MS    | 203 MS                 | 169.9 Ma                 | 114 MS                    | 50.3 MS                   |  |
| 95Rb        | 96Rb                   | 97.                      | 8Rb                       | 99Rb                      |  |
| 377.5 MS    | 203 MS                 | 169.9 Ms                 | 114 MS                    | 50.3 MS                   |  |
| β-: 100.00% | β-: 100.00%            | β-: 100.00%              | β-: 100.00%               | β-: 100.00%               |  |
| β-n: 8.73%  | β-n: 13.30%            | β-n: 25.10%              | β-n: 13.80%               | β-n: 15.90%               |  |
| 95Rb        | 96Rb                   | 97                       | 8Rb                       | 99Rb                      |  |
| 377.5 MS    | 203 MS                 | 169.9 Ms                 | 114 MS                    | 50.3 MS                   |  |
| β-: 100.00% | β-: 100.00%            | β-: 100.00%              | β-: 100.00%               | β-: 100.00%               |  |
| β-n: 8.73%  | β-n: 13.30%            | β-n: 25.10%              | β-n: 13.80%               | β-n: 15.90%               |  |
| 94Kr        | 95Kr                   | 96Kr                     | 97Kr                      | 98Kr                      |  |
| 95Rb        | 96Rb                   | 97                       | 8Rb                       | 99Rb                      |  |
| 377.5 MS    | 203 MS                 | 169.9 Ms                 | 114 MS                    | 50.3 MS                   |  |
| β-: 100.00% | β-: 100.00%            | β-: 100.00%              | β-: 100.00%               | β-: 100.00%               |  |
| β-n: 8.73%  | β-n: 13.30%            | β-n: 25.10%              | β-n: 13.80%               | β-n: 15.90%               |  |
| 94Kr        | 95Kr                   | 96Kr                     | 97Kr                      | 98Kr                      |  |
| 212 MS      | 114 MS                 | 80 MS                    | 63 MS                     | 46 MS                     |  |



 $T_{1/2}$ 

Likelihood method with 10ms bins (0 - 5 sec)Free parameters for fitting

- Background  $\dots \sim 0.5 \text{ cps}$
- Neutron emission Probability (Pn)
- Detection efficiency ( $\epsilon$ ) ... 40% 80%

### Consistency check

- Monte Carlo Simulation / beta-delayed gamma

### Beta-decay Half-life T<sub>1/2</sub> for Kr-Tc





Zr and Nb decay faster than expected by FRDM+QRPA ( $T_{1/2}$ :  $1/2 \sim 1/3$ )

# Upgrade : 2009 → 2012

U-beam intensity - 0.2 pnA  $\rightarrow$  ~ 10 pnA ... x 50 times



Gamma-ray detector - 4 Clover detectors → 12 Cluster detectors (Det. Eff. ~ 8 % at 1 MeV) ... x 10 times (→ gamma-gamma coincidence ... x 100 times )

Beta counting system

- 16 x 16 pixels x 7 layers = 1792 pixels  $\rightarrow$  40x60 pixels x 8 layers = 19200 pixels ... x 10 times



### New Half-lives Measurements (2011 ~)



 $\rightarrow$  Feedback to theory.

# Decay Spectroscopy in the vicinity of double magic <sup>78</sup>Ni (Z=28, N=50)

#### Z.M.Niu, PLB 723 (2013)



[ History of <sup>78</sup>Ni ]

#### -1997

Identified as sew isotope (3 events) M.Bernas et al., PLB415 (1997)

### - 2005

Beta-decay half-life (11 events)  $T_{1/2} \sim 110_{-60}^{+100}$  ms T.Hosmer et al., PRL94 (2005)

### RIBF: Decay Experiment around <sup>78</sup>Ni region



~ 12 k of <sup>78</sup>Ni produced at the RIBF. Low production yield of <sup>79</sup>Ni (<sup>78</sup>Ni + neutron)

## <sup>78</sup>Ni beta-decay half-life



What about N=51 ( $^{79}$ Ni)? Z=27 ( $^{77}$ Co)?

### Half-lives and Pn on N = 50 (Experiment $\leftarrow \rightarrow$ Theory)



Decay properties around double magic <sup>132</sup>Sn (Z=50, N=82)



J. Hakala et al., Phys. Rev. Lett. 109 (2012) 032501

New isomers around 132Sn region

### Half-lives of Cd isotopes



### Decay Spectroscopy around <sup>128</sup>Pd and <sup>115</sup>Nb



β-Decay Half-Lives of Very Neutron-Rich Kr to Tc Isotopes on the Boundary of the *r*-Process Path: An Indication of Fast *r*-Matter Flow

### **Most Neutron-Rich N=82 Isomer with EURICA**

(r-Process waiting point)



→ No evidence for shell-quenching in <sup>128</sup>Pd....

### First Excited State: E(2+)



### First Excited State: E(2+)



# Beta-decay Half-lives N = 82 → Feedback to the Theory K.Langanke Phys. Scr. T152 (2013) 014011



So call r-process waiting point nuclei (N=82)

- r-process path
- residual r-matter flow in freeze-out

 $T_{1/2}$  of Cd isotopes (EURICA)

### Beta-decay half-lives of Cd isotopes (RIBF)



<sup>130</sup>Cd isomer: Consistent RISING – EURICA (GSI) (RIBF) Significant impact to SM calc. & r-process simulation !

Beta-delayed gamma of  ${}^{131,132}Cd \rightarrow {}^{131}In$ .

### Low lying state in <sup>131</sup>In (<sup>131</sup>Cd beta-decay, <sup>132</sup>Cd beta-delayed neutron)

RIBF (EURICA) + Shell Model calc.

J.Taprogge, A.Jungclaus, H.Grawe, et al. To be published in Phys. Rev. Lett. (please wait..)

Robust evidence for the disappearance of the Z = 38, 40 proton subshell closures at N = 82 (<sup>120</sup>Sr and <sup>122</sup>Zr).

18 detectors φ1.5" x 2"

# Complementary LaBr<sub>3</sub> array for fast timing with EURICA

### Spokesperson: T.Sumikama





For short life-times a LaBr<sub>3</sub> array for fast timing has been installed to complement the HPGe detectors



### BRIKEN Project (RIBF) Monster of 3He Detectors

Table 1: <sup>3</sup>He tubes available within the BRIKEN Collaboration.

| Owner | Pressure | S          | Number of   |          |
|-------|----------|------------|-------------|----------|
|       | (atm)    | Diameter   | Eff. Length | Counters |
|       |          | (inch/cm)  | (inch/mm)   |          |
| GSI   | 10       | 1 / 2.54   | 23.62 / 600 | 10       |
| JINR  | 4        | 1.18 / 3.0 | 19.69/500   | 20       |
| ORNL  | 10       | 2 / 5.08   | 24/609.6    | 67       |
| ORNL  | 10       | 1 / 2.54   | 24/609.6    | 17       |
| RIKEN | 5.13     | 1 / 2.54   | 118.1/300   | 26       |
| UPC   | 8        | 1 / 2.54   | 23.62/600   | 42       |
|       |          | Total      |             | 182      |





Silicon detectors (AIDA from UK) Very high efficiency neutron detector
→ Survey of beta-delayed multi-neutron & T1/2

### Beta-decay flow



Neutron number (N)

### EURICA Project + BRIKEN Project

 $\rightarrow$  Beta-delayed multi-neutron emission measurement

### Fast-timing beta-counting system: CAITEN





(b)

(c)











Photomultiplier tube array

Light guide



Registive-chain readout

### K.Steiger, Z.Li

### Beta-delayed gamma of <sup>37</sup>Al

# Beta-decay half-lives (CAITEN)

### K.Steiger, SN et al., Bormio Proc. 032 (2013)



### High precision $T_{1/2}$ measurement ( implantation rate 300 ~ 1 kcps )



time [µs]

1000

60000

50000

40000

2 30000

20000

10000

time [µs]

# Proton rich nuclei

# (EURICA)

### Decay Spectroscopy in vicinity of <sup>100</sup>Sn

### $^{124}$ Xe beam int. = $32 \sim 38$ pnA

### M.Lewitwicz, R.Krucken/R.Gernhauser, SN

| <sup>00</sup> Sn |  |
|------------------|--|
|------------------|--|

 $\sim 2000$  events

|    |    |               |               |                  |                  | 99Sn                      | 100Sn<br>0.86 S          | 101Sn<br>1.7 S            | 102Sn<br>3.8 S  |
|----|----|---------------|---------------|------------------|------------------|---------------------------|--------------------------|---------------------------|-----------------|
| Z  |    |               |               |                  | ep<br>e          | е: 100.00%<br>ер < 17.00% | е: 100.00%<br>ер: 26.00% | e: 100.00%                |                 |
|    |    |               |               |                  | 97In             | 98In<br>32 MS             | 99In<br>3.0 S            | 100In<br>5.9 S            | 101In<br>15.1 S |
| 49 |    |               |               |                  | P<br>¢           | e                         | e                        | €: 100.00%<br>€p: 1.60%   | e<br>ep         |
|    |    |               |               | 95Cd             | 96Cd<br>1.03 S   | 97Cd<br>1.10 S            | 98Cd<br>9.2 S            | 99Cd<br>16 S              | 100Cd<br>49.1 S |
| 48 |    |               |               | e<br>ep          | ε: 100.00%       | є: 100.00%<br>єр: 12.0%   | €: 100.00%<br>€p < 0.03% | €: 100.00%<br>€p: 0.17%   | e: 100.00%      |
|    |    |               | 93Ag          | 94Ag<br>26 MS    | 95Ag<br>1.75 S   | 96Ag<br>4.40 S            | 97Ag<br>25.5 S           | 98Ag<br>47.5 S            | 99Ag<br>124 S   |
| 47 |    |               | ep<br>e       | е: 100.00%<br>ер | е: 100.00%<br>ер | є: 100.00%<br>ср: 8.50%   | e: 100.00%               | €: 100.00%<br>€p: 1.1E-3% | e: 100.00%      |
|    |    | 91Pd<br>>1 μS | 92Pd<br>0.7 S | 93Pd<br>1.00 S   | 94Pd<br>9.6 S    | 95Pd<br>5 S               | 96Pd<br>122 S            | 97Pd<br>3.10 M            | 98Pd<br>17.7 M  |
| 46 |    | e             | e: 100.00%    | е: 100.00%<br>ер | e: 100.00%       | e: 100.00%                | e: 100.00%               | e: 100.00%                | e: 100.00%      |
|    | 44 | 45            | 46            | 47               | 48               | 49                        | 50                       | 51                        | N               |

New half-lives: <sup>99</sup>Sn and <sup>95</sup>Cd -Qbeta -beta-delayed gamma -beta-delayed proton

### RIBF097: rp-process (G.Lorusso)

G.Lorusso (RIKEN) ... 2.5 days



73Sr → 73Rb → 72Kr + p ... Energy spectrum of beta-delayed proton ... Beta-decay half-lives of <sup>73,74</sup>Sr

### In five years... (U-beam int. $\geq$ 100 pnA!?)



Several hundreds of new beta-decay half-lives in five years. → Significant contribution in nuclear structure and r-process nucleosynthesis.

### **Decay Programs at RIBF**

2010

2011

2012

2013

2014

2009



<sup>110</sup>Zr region (3-days)

\*PLB 696, 186 (2011)
\*PRL. 106, 052502 (2011)
\*PRL. 106, 202501 (2011)
\*PLB 704, 270 (2011)

<mark>β-n(-γ)</mark> [ high efficiency ]

**BRIKEN Project** 180 <sup>3</sup>He counters

BELEN (Spain) +3Hen (ORNL) +GSI/Russia+RIKEN <mark>β-γ-n</mark> [fast timing]

**CAITEN Project** 



LaBr3 detectors
Neutron detector (NiGIRI)



EURICA Project WAS3ABi (Si)





\*PRC 88, 024301 (2013) \*PRL 111, 152501 (2013)<sup>!</sup> \*PRL \*\*\* (2014)



# Summary

- Decay spectroscopy is powerful tool to investigate the properties of exotic nuclei !
  - Beta-decay half-lives (T1/2)
  - Beta-delayed gamma (low lying states), Isomer
  - Qbeta, EC
  - Beta-delayed neutron (proton) -emission
- New projects at RIBF
  - EURICA
  - BRIKEN
  - CAITEN

Rare-RI Ring (Mass) SLOWRI-MRTOF(Mass) DALI2 (In-Beam Gamma)

- High intensity radioactive beam facility
  - RIBF, FAIR, FRIB, GANIL, TRIUMF, ISOLDE, RISP, ...
    - $\rightarrow$  Golden time for nuclear structure & nuclear astrophysics
      - (Magicity, Shell-quenching, Deformation
        - $\rightarrow$  r-process, rp-process, ... )

### **EURICA** Collaboration and Support

### 2012 Nov.-Dec.



2012 J<u>une</u>

Acknowledgement: Euroball Owners Committee PreSPEC, IBS-RISP

#### Collaboration:

Tohoku, Univ. Tokyo, Brighton Univ. Debrecen, Joseph Fourier, Osaka Univ. Peking, LPSC, IBS, Oslo, Consejo Sup. De Inv. Cientificas, IPN Orsay, Padova, Leuven, SKKU, INFN, ANU, Koeln, TU Muenchen, Fisica, Legnaro, ATOMKI, INFN-Milano, INFN-Firenze, INFN-LNL, Univ. di Padova, Surrey, GSI, ANL, Yale, Milano, Univ. Madrid, Tech. Univ. Darmstadt, Univ. Istanbul, CNS, CEA, RCNP, Univ. Notre Dame, Inst. voor Kern-en Stralings Fysica, Hoseo Univ., Univ. Tsukuba, Inst. Plurid. Hubert Curien, and RIKEN

#### 2013 May







# **BRIKEN** Collaboration

| Agnieszka Korgul         | University of Warsaw    |
|--------------------------|-------------------------|
| Albert Riego             | UPC                     |
| Alfredo Estrade          | University of Edinburgh |
| Alejandro Algora         | IFIC                    |
| Anu Kankainen            | University of Edinburgh |
| Adam Garnsworthy         | TRIUMF                  |
| Belen Gomez              | UPC                     |
| Berta Rubio              | IFIC                    |
| Francisco Calvino        | UPC                     |
| Cesar Domingo Pardo      | IFIC                    |
| Chiara Mazzocchi         | University of Warsaw    |
| Christopher Griffin      | University of Edinburgh |
| Claudia Lederer          | University of Edinburgh |
| Charlie Rasco            | LSU                     |
| Daniel Cano Ott          | CIEMAT                  |
| Maria Dolores Jordan     | IFIC                    |
| David Joss               | University of Llverpool |
| Giuseppe Lorusso         | RIKEN                   |
| Carl J. Gross            | ORNL                    |
| Guillem Cortes           | UPC                     |
| Gyurky Gyorgy            | ATOMKI                  |
| Hiroyoshi Sakurai        | The University of Tokyo |
| Hideki Ueno              | RIKEN                   |
| Iris Dillmann            | TRIUMF                  |
| John Simpson             | Daresbury Laboratory    |
| Jorge Agramunt           | IFIC                    |
| Kiss Gabor               | ATOMKI                  |
| Karolina Kolos           | University of Tennessee |
| K. Miernik               | University of Warsaw    |
| Krzysztof P. Rykaczewski | ORNL                    |

| Karl Smith            | University of Notre Dame | PhD student |
|-----------------------|--------------------------|-------------|
| Gabor Gyula Kiss      | ATOMKI                   | Researcher  |
| Toshiuki Kubo         | RIKEN                    | Researcher  |
| Marc Labiche          | Daresbury Laboratory     | Researcher  |
| Keishi Matsui         | The University of Tokyo  | PhD student |
| Megumi Niikura        | The University of Tokyo  | Professor   |
| Michele Marta         | GSI                      | Post-doc    |
| Miguel Madurga        | University of Tennessee  | Post-doc    |
| Fernando Montes       | NSCL                     | Researcher  |
| Nathan Brewer         | University of Tennessee  | Post-doc    |
| Shunji Nishimura      | RIKEN                    | Researcher  |
| Nobuyuki Kobayashi    | University of Tokyo      | Post-doc    |
| Jorge Pereira Conca   | NSCL                     | Researcher  |
| Paul Garret           | University of Guelph     | Professor   |
| Phillip J. Woods      | University of Edinburgh  | Professor   |
| Robert Grzywacz       | University of Tennessee  | Professor   |
| Robert Page           | University of Liverpool  | Professor   |
| Roger Caballero Folch | UPC                      | PhD student |
| Ryo Taniuchi          | The University of Tokyo  | PhD student |
| Sami Rinta Antilla    | University of Jyvaskyla  | Researcher  |
| Satoru Momiyama       | The University of Tokyo  | Student     |
| Evgeny Sokol          | JINR                     | Researcher  |
| Tom Davinson          | University of Edinburgh  | Researcher  |
| Jose Luis Tain        | IFIC                     | Researcher  |
| Takuya Miyazaki       | The University of Tokyo  | Student     |
| Trino Martinez        | CIEMAT                   | Post-doc    |
| Hendrik Schatz        | MSU/NSCL                 | Professor   |
| Yue Ma                | RIKEN                    | Researcher  |
| Zhengyu Xu            | The University of Tokyo  | PhD student |
| Zhong Liu             | IMPCAS                   | Researcher  |
| Jeff A. Winger        | Mississippi State        | Researcher  |
|                       | University               |             |
| M. Wolinska Cichocka  | ORNL                     | Post-doc    |
| Jin Wu                | Peking University        | PhD student |

# **CAITEN** Collaboration



Shunji Nishimura<sup>1</sup>, Zhihuan Li<sup>1</sup>, Konrad Steiger<sup>2</sup>, Thomas Faestermann<sup>2</sup>, Roman Gernhäuser<sup>2</sup>, Christoph Hinke<sup>2</sup>, Reiner Krücken<sup>2</sup>, Giuseppe Lorus Yuki Miyashita<sup>3</sup>, Mizuki Nishimura<sup>1</sup>, Chen Ruijiu<sup>1</sup>, Kenichi Sugimoto<sup>3</sup>, Toshiyuki Sumikama<sup>3</sup>, Hiroshi Watanabe<sup>1</sup> and Kenta Yoshinaga<sup>3</sup>

<sup>1</sup> RIKEN Nishina Center, Wako
 <sup>2</sup> Technische Universität München
 <sup>3</sup> Tokyo University of Science

Special thanks to S.Takeuchi, H.Scheit, T.Nakamura, M.Takechi, D.Bazin, P.Fallon





0

R