

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Aleksandar GOSTOJIĆ

CSNSM, Orsay, France

11th Russbach School on Nuclear Astrophysics, March 2014.

Introduction: Gamma-ray instruments

GROUND BASED:

- ENERGY HIGHER THEN 100 GeV
- INTERACTION IN ATMOSPHERE
- ELECTROMAGNETIC CASCADES
- FLASHES OF CHERENKOV LIGHT
- WIDE AREA OF DETECTION

H.E.S.S. - High Energy Stereoscopic System

INTEGRAL - INTErnational Gamma-Ray Astrophysics Laboratory

SPACEBORNE:

- ENERGY: **100 keV 100 GeV**
- DETECTION ABOVE THE ATMOSPHERE
- BALLOONS AND SATELLITES
- PAIR PRODUCTION TELESCOPES, COMPTON, CODED MASK, GAMMA-RAY LENSES

Previous missions 1: CGRO - COMPTEL

Compton Gamma-Ray Observatory (5th of Apr 1991. – 4th of June 2000.) 30 keV up to 30 GeV / 4 Instruments

Imaging Gamma-Ray Telescope – COMPTEL

- ✓ 0.8-30 MeV
- ✓ upper detector: NE 213A liquid scintillator
- ✓ 4 lower: clusters of NaI scintillators
- Anti-Coincidence (AC) shielding
- electronics

ALL-SKY MAPPING AND GAMMA LINE SPECTROSCOPY

- ⁴⁴Ti and ²⁶Al lines: on-going nucleosynthesis in massive stars and supernovae
- GRBs, SNR, pulsars (X-ray), blazars, black holes
- all-sky maps in MeV range: 63 γ-ray sources pulsars and active galactic nuclei (AGN)
- Solar gamma rays, diffuse emission

Previous missions 2: INTEGRAL – SPI/IBIS

INTErnational Gamma-Ray Astrophysics Laboratory (17 of Oct. 2002 -)

The imager on-board INTEGRAL – IBIS

- Angular resol: 12 arcmin FWHM
- 15 keV 10 MeV
- coded mask + 2 planes of pixels
- 1st 16384 CdTe pixels: low E γ-rays
- 2nd 4096 CsI pixels: high E
- Shielding: lead + BGO

Spectrometer on-board INTEGRAL – SPI

- 18 keV 8 MeV E: 2.2 keV (FWHM) @ 1.33 MeV
- array of cooled HPGe Tungsten hexagonal coded aperture mask
- AC shielding: BGO+plastic scintillator.

galaxy map of 511 keV annihilation emission, gamma line emissions from ⁴⁴Ti, ⁶⁰Fe and ²⁶Al, catalogued over 400 γ -ray objects (neutron stars, active galactic nuclei or black holes), powerful X-rays and y-rays (pulsars with an extremely powerful magnetic field, magnetars), weak GRBs (nearby GRB 031203), captured giant GRB (SGR 1806-20), X-ray binaries

Motivation: Gamma-ray astronomy and ESA's Cosmic Vision

- European proposals in response of ESA's call (2010) for a third Medium-size mission (program "Cosmic Vision 2015-2025"):
- DUAL (PI: CESR Toulouse): a Laue lens + a Compton telescope in Germanium
- GRIPS (PI: MPE Garching): a Compton telescope in Si (tracker) and LaBr₃
- CAPSITT (PI: APC Paris): a Compton telescope in Si (no calorimeter)

A single proposal for ESA's next call (M4 in 2014) !

M3 Mission proposals for the Cosmic Vision 2015 - 2025

Motivation: Sensitivity of current and previous instruments

Conceptual design of an Advanced Compton Telescope

Optimize background rejection (sensitivity), perform Compton imaging and polarization studies:
✓ Fine 3-D position resolution (~1 mm³) → Si DSSD (tracker)
✓ Good energy resolution → LaBr₃:Ce scintillator (calorimeter)

3D - Imaging calorimeter in LaBr₃:Ce

- LaBr₃:Ce scintillator : good energy resolution, high stopping power, very fast response
- **3D position** resolution Anger-camera-like module

Coupling of LaBr₃:Ce crystals (St Gobain) to a multianode PMTs (Hamamatsu)

Dedicated test bench (mechanics, electronics)

Detector module in detail

Results: measurements and simulation

Detector characterization (1): Position resolution

<u>Final error</u> on 2D position resolution: standard deviation corrected for beam spot size: $\sigma \approx 1.7$ mm (from GEANT4 simulation)

Detector characterization (2): E dynamic range

Ag X rays LOW-END: - X rays Ag sheet irradiated 300 - MIN energy: 22 w/o Ag sheet Ag K_x **keV** - background + Ag K_x -2 200 counts x 10 Co60 γ lines Ba K_v + Auger 0.1 Counts (a.u.) 0.09 100 0.08 0.07 1.17 MeV 0.06 0 30 40 50 0 10 2060 70 80 0.05 1.33 MeV E (keV) 0.04 0.03 HIGH-END: - gamma-rays 0.02 - MAX energy: 1.3 MeV 0.01 0 1000 1250 1500 1750 2000 2250 2500 0 250 500 750

Charge (pC)

Detector characterization (3): Energy resolution

Compensated for different interaction locations (less charge detected closer to the detector border) => 4.9 % -> 3.7 % at 662 keV

Overview

PACT: Pair And Compton Telescope

More information at:

astromev.eu