p process: Overview and status of experimental efforts

Artemis Spyrou National Superconducting Cyclotron Laboratory Michigan State University

Overview

- p-process
- Uncertainties Sensitivity studies
- Important reactions
- Experimental methods
- Regular kinematics: Summing technique
- Inverse kinematics efforts
 - DRAGON
 - SuN

• Towards radioactive beam experiments

Review

March 20, 2014

Arnould-Goriely, Physics Report 384 (2003) 1 Rauscher et al, Rep. Prog. Phys. 76 (2013) 066201

March 20, 2014

Proposed Scenarios

O/Ne Layers of massive stars during the Type II SN (Most favored scenario) $1.7 \le T_q \le 3.3$

Woosley & Howard 1978 Rayet 1990, 1995 Prantzos 1990 Hayakawa 2004, 2008

Type Ia SN $1.5 \le T_q \le 3.7$

Howard & Meyer 1992, Goriely 2001, Travaglio 2011

Recently: vp-process, neutrino driven wind Frochlich 2006, 2012, Wanajo 2006, 2011

 $1.0 \leq T_{q} \leq 3.0$

NSC

VSC

S)

March 20, 2014

Sensitivity studies

Only two studies in the market:

Rapp et al. AJ 653 (2006) 474

•Type II SN explosion when shock front passes through the O/Ne layer of a $M=25M_{\odot}$ star

 10°

•Model dependent

Rauscher et al. Phys. Rev. C 73 (2006) 015804

- Model independent approach
- Reaction rate comparison
- Branching points

- 1. Need to perform new measurements with stable beams
- 2. Need to develop techniques for measurements with radioactive beams

$(\gamma, p), (\gamma, \alpha) vs (p, \gamma), (\alpha, \gamma)$ Often better to measure in the time reverse direction

March 20, 2014

S) NSCI

NSC

ISCI

VSC

9)

NSCL

S NSCI

NŚĆI

S) NSCI

NSCI

S)

Experimental techniques

• Regular kinematics

<u>Facilities</u>: Tandem labs (ATOMKI, Athens, Notre Dame, Cologne, Bochum, etc)

Equipment: Gamma-ray detectors

<u>Techniques</u>: Activation – Angular distribution – Summing

Advantages:

- •High intensity stable beams
- •Well developed techniques

Disadvantages

• Not applicable for all targets, in particular radioactive nuclei

March 20, 2014

Regular Kinematics

the summing technique

Artemis Spyrou, MSU

S NSCL

March 20, 2014

The $\gamma\text{-}Summing$ Method

15

IŚĆ JSC **ISCI** NSCI S NSCL S NSC **S** NSCL 6 NSCI 9 NSCI ୭ **VSC NSCI** ISC NŚĆI S 6

NSCI

SuN (Summing NaI) @ MSU

ISC

S)

S NSCI

ISC

NSCI

S) NSCI

> <u>୍</u>ତ୍ର ର

NSC

Nucleosynthesis of the lightest p nucleus ⁷⁴Se

18

Rapp et al. AJ 653 (2006) 474

 74 Ge(p, γ) 75 As

SCL NSCL SCL SCL SCL SCL SCL SCL SCL NSCL

NSCL

S NSCL

S NSCL S NSCL S S

NSCI S NSCI S NSCI

Rapp et al. AJ 653 (2006) 474

/										-
TABLE 2			⁷³ Kr	⁷⁴ Kr	⁷⁵ Kr	⁷⁶ Kr	⁷⁷ Kr	⁷⁸ Kr	⁷⁹ Kr	
Reactions			⁷² Br	⁷³ Br	⁷⁴ Br	⁷⁵ Br	⁷⁶ Br	⁷⁷ Br	⁷⁸ Br	
126 Ba(γ, p) 125 Cs*	⁹² Mo(γ, p) ⁹¹ Nb*	75 Se $(n, p)^{75}$ As*	⁷¹ Se	⁷² Se	⁷³ Se	74 S	⁷⁵ 3e	⁷⁶ Se	⁷⁷ Se	
110 Sn $(\gamma, p)^{109}$ In* 106 Cd $(\gamma, p)^{105}$ Ag	86 Rb (n,p) 86 Kr* 85 Sr (n,p) 85 Rb*	74 Se $(\gamma, p)^{73}$ As* 76 As $(n, p)^{76}$ Ge*	⁷⁰ As	⁷¹ As	⁷² As	⁷³ As	⁷⁴ As	75 p .	⁷⁶ As	
$^{104}Cd(\gamma, p)^{103}Ag$ $^{100}Pd(\gamma, p)^{99}Rh$	84 Sr (γ, p) 83 Rb* 78 Kr (γ, p) 77 Br*	75 As $(\gamma, p)^{74}$ Ge*	⁶⁹ Ge	⁷⁰ Ge	⁷¹ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	
90 Ru $(\gamma, p)^{93}$ Tc*	''Se(n, p)''As	^{/1} Ge(n, p) ^{/1} Ga	⁶⁸ Ga	⁶⁹ Ga	⁷⁰ Ga	⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	
			SKE Katali							
March 20, 2014		19			•	Aı	temis	Spyrou	ı, MSU	J

University of Notre Dame 10 MV Tandem Accelerator

Summing NaI (SuN)

21

12.

Artemis Spyrou, MSU

March 20, 2014

Inverse Kinematics

Stable beams

- 1. Measure reactions that are hard in regular kinematics
- 2. Develop techniques for future measurements with radioactive beams
 - Efforts @ MSU using SuN
 - Efforts @ TRIUMF using DRAGON

Artemis Spyrou, MSU

March 20, 2014

S)

ISC

ISCI

• Technique applicable for measurements with stable or radioactive beams

March 20, 2014

Artemis Spyrou, NSCL

SuNSCREEN

- 9 plastic scintillator bars
- Two PMTs on each bar
- Calibrated and optimized
- Rejection of ≈ factor 5

First stable beam test experiments at MSU end of 2014.

ெ NSCI NSCI 6 NSCI S S NSCI S NSCI S NSCI S NSCI NŚĆI NSCI IŚĆ NŚĆI G Artemis Spyrou, MSU 6 VSCI

ெ

NSCI

6 NSC

Inverse Kinematics

Radioactive beams

• Efforts at TRIUMF will continue

30

• New facility at MSU: ReA3

Artemis Spyrou, MSU

March 20, 2014

Next Step: Experimental hall

Status

- First radioactive beam accelerated to 1.5 MeV/u
- First commissioning experiment Summer 2013
- First call proposals for selected beams February 2014
- Higher energy capabilities Fall 2014

6

NSCI

ISC

JSC

6

NŚĆI

IŚĆ

6 NSCI

JSC

ISC

S)

S

Conclusions

- Making progress toward understanding the nuclear physics uncertainties in the p process
- (p,γ) reactions relatively well described (within factor 3)
- (α, γ) still large uncertainties (factor 10)
- Experimental data are limited to light masses
- Stable beams: need to extend to heavier regions
- Plans for radioactive beam experiments under way

Collaborators

Michigan State University / NSCL

Stephen Quinn, Anna Simon, Alexander Dombos, Sean Liddick, A. Kontos,

+8 UG students

University of Notre Dame

T. Battaglia, A. Best, M. Bowers, B. Bucher, M. Couder, X. Fang, J. Görres, Q. Li, A. Long, S. Lyons, A. Roberts, D. Robertson, M. Smith, K. Smith, E. Stech, W. Tan, X. Tang, M. Wiescher

Hope College

Paul DeYoung

TRIUMF

March 20, 2014

C. Akers, J. Fallis, C. Ruiz, G. Christian, D. Hutcheon

MICHIGAN STATE

NIVERSITY

NSCI

University of York A. Laird, B. Fulton

