

Nuclear astrophysics at ELI-NP

or «conditions created by one ExtremeLy hot Infrastructure for Nuclear astroPhysics»

Livius Trache

with material from N.V. Zamfir, I.I. Ursu, P. Thirolfs, ELI-NP workshops participants et al.

IFIN-HH Bucharest-Magurele

11th Russbach School on Nuclear Astrophysics 9-15 March 2014 Russbach (Austria)

Summary

- 1. Nuclear physics for astrophysics (NPA)
 - Direct measurements
 - Indirect methods radioactive nuclear beam
- 2. ELI-NP in Bucharest presentation
- 3. ELI-NP: RIB production
- 4. ELI-NP: stellar plasmas

1 Nuclear Physics for Astrophysics

NPA: study in the lab nuclear reactions that happen(ed) in the stars – which are cold

- Low energies => low cross sectios: nb, pb, ... fb!
- exotic partners (unstable)
- a) Direct measurements: very low rates (=> w stable beams so far)
 - high intensities
 - high detection efficiency
 - selectivity
 - reduced background
- b) Indirect methods with stable beams and radioactive beams
 - A. Coulomb dissociation
 - B. Transfer reactions (ANC method)
 - C. Breakup of loosely bound nuclei
 - D. Spectroscopy of resonances: β -decay, β -delayed proton decay, transfer reactions, resonant elastic scatt., etc
 - Decay spectroscopy
 - Any spectroscopy ...
 - E. Trojan Horse Method
 - ...

M. Smith & E. Rehm

Two big problems:

- 1. reactions in stars involve(d) radioactive nuclei \Rightarrow use RNB
- **2.** very small energies and very small cross sections \Rightarrow indirect methods

e.

4

Superconducting FRagment Separator at FAIR

MARS spectrograph

- ²⁶Mg primary beam from K500 at 16 MeV/u.
- Produce ²⁶Al beam with ²⁶Mg(p,n) reaction.
- Refocus Beam in detector chamber on CD₂ target.
- Separation by production mechanism:
 - Fusion-evaporation: 3x10⁶ pps 67% ²⁶Al gs
 - Transfer (charge exchange (p,n)): 3x10⁵ pps, 67% ^{26m}Al

Motivation: cosmic production of ²⁶Al, ^{26m}Al

Galactic images with Comptel and Integral

- \bullet Satellites detect 1.8 MeV gamma ray from ^{26g}Al $\beta\text{-}$ decay.
- Lifetime of ^{26g}Al is 7.2*10⁵ yrs. For ^{26m}Al is 6.2 sec.
- Gives evidence of ongoing Nucleosynthesis in stars in the galaxy.
- Want to understand production and destruction of nuclei like ²⁶Al in stars – maybe ^{26m}Al (0⁺) is important?

Destruction of ²⁶Al

Figure: C.M. Deibel et al. PRC 80

- Satellites detect less 1.8 MeV γrays than expected.
- In astrophysical environment (0.1 GK < T < 0.4 GK → 100 keV < E_{CM} < 600 keV) ²⁶Al can also be destroyed by ²⁶Al(p,γ).
- Try to investigate levels of interest for ^{26m}Al(p,γ) and ^{26g}Al(p,γ) by studying IAS states in ²⁷Al with ²⁶Al(d,p) reaction.

Extreme Light Infrastructure -Nuclear Physics ELI – NP Bucharest-Magurele, Romania

Project leader: Nicolae-Victor Zamfir Bucharest-Magurele, Romania

Extreme Light Infrastructure

2006 – ELI on ESFRI Roadmap

ELI-PP 2007-2010 (FP7)

ELI-Beamlines (Czech Republic) ELI-Attoseconds (Hungary) ELI-Nuclear Physics (Romania) Project Approved by the European Competitiveness Council (December 2009) ELI-DC (Delivery Consortium): April 2010 Bucharest: June 2013 – civil constr start

Nuclear Physics

Extreme Light Infrastructure – Nuclear Physics (ELI-NP)

ELI-NP Research

Exotic nuclei and

astrophysics studies

particle creation in

interactions

laser-gamma beams

 Materials under extreme irradiation

 Management of Nuclear Materials
 Industrial tomography
 Brilliant positron and

neutron sources for materials/processes

characterization

Vacuum properties and

Fundamental

pplicative

4

Understanding

laser-driven

acceleration

mechanism

•A chance for Romania to have the most powerful laser system and the most brilliant gamma beams in the world at the level of 2015 for 280 MEuro from EU Structural Funds.

ELI will be an European Research Infrastructure for high-level research on ultra-high intensity lasers and laser-matter interaction.

ELI will have 4 pillars:

- ELI Attoseconds in Szeged (Hungary)
- ELI Beamlines in Prague (Czech Republic)
- ELI Nuclear Physics in Magurele (Romania)
- ELI High Fields (to be decided in 2012)

ELI-NP 20 PW Laser

Two synchronized arms of 10 PW (200 J / 20 fs) with: - 0.02 Hz repetition rate - OPCPA Front-End - Ti:Sapphire amplification

Antra-Gernini system in operation at CLP (Central Laser facility) in Defordshire, UK

ELI-NP y-beams

Max. y energy: 19 MeV Total flux: 10¹³ photons/sec Bandwidth: 0.1%

Production method: light photons (10 J laser) scattered on high energy electrons (600 MeV linear accelerator)

T-REX facility at Lawrence Diversion National Laboratory (SUA)

Bucharest – Magurele Physics Institutes

Nuclear Physics

Bucharest-Magurele National Physics Institutes

ELI-NP "Start-up" Activities

aser building

na and experimental

• February-April 2010

Scientific case **"White Book"** (100 scientists, 30 institutions) (www.eli-np.ro) approved by ELI-NP International Scientific Advisory Board

- August 2010: Feasibility Study: 293 Mei
 - Buildings: 60 M€
 - Lasers: 60 M€
 - Gamma Beam: 60 M€
 - Beam Transport 20 M€
 - Exp. equipments: 30 M€
- August 2011 March 2012: Technical De
- January 2012: Submission of the applica
- July 2012: Government Decision approvin
- September 2012: Approval of the application
- June 14, 2013: Foundation stone ceremon
- March 2014: all components contracted, work started

ELI-Nuclear Physics

"Extreme Light" :

- *two 10 PW APOLLON-type lasers*
- brilliant y beam, up to 20 MeV, BW:0.1% produced by Compton scattering of a laser beam on a 700 MeV electron beam

ELI-NP Main buildings

- Lasers
- Gamma
- experiments
- Laboratories

Idea: to stretch (and chirp) a fs pulse from an oscillator (up to 10,000 times), increase the energy by linear amplification, and thereafter recompress the pulse to the original pulse duration and shape

During amplification, the laser intensity is significantly decreased in order

- to avoid the damage of the optical components of the amplifiers;

- to reduce the temporal and spatial profile distortion by non-linear optical effects during the pulse propagation

ELI-NP Next Steps

- January 2012: Submission of the Application to DG-Regio
- July 2012: Romanian Government Approval
- August 2012: Tender Procedures start
- November 2012- end 2014: Civil Construction
- July 2015 : Lasers and Gamma Beam Phase 1
- December 2016 : Lasers and Gamma beam Phase 2
- 2013-2015: TDR for experiments
- 2016-2018: experimental set-ups
- 2018: beginning of operation

ELI – Nuclear Physics Research

- *Nuclear Physics experiments to characterize laser target interact.*
- *Photonuclear reactions most brilliant y-beam, good resol.*
- Exotic Nuclear Physics and Astrophysics complementary to other **NP large facilities (FAIR, SPIRAL2, EURISOL)**.
- Applications based on high intensity laser and very brilliant γ beams. Complementary to the other pillars

ELI - Nuclear Physics

in 'Nuclear Physics Long Range Plan in Europe' as a major facility

Nuclear Astrophysics: RIB production & ELI-NP

Target Normal Sheath Acceleration (TNSA)

Primary radiations

Electrons are expelled from the target due to the ponderomotive force Heavy ions are accelerated in the field created by the electrons

Radiation Pressure Acceleration RPA

Electrons and ions accelerated at solid state densities 10²⁴e cm⁻³ (Classical beam densities 10⁸e cm⁻³)

Production of Extremely Neutron-Rich Isotopes

LoI: P. Thirolf et al. (LMU Munich)

Nuclear Physics

> motivation:

- exploit ultra-dense laser-accelerated ion beams for novel nuclear reaction mechanism: "fission-fusion"
- produce extremely n-rich species towards N=126
- expected production range:

Peter G. Thirolf, LMU München

Towards N=126 Waiting Point

> r process path:

- known isotopes ~15 neutrons away from r-process path (Z \approx 70)

➤ measure:

- masses, lifetimes, structure

Nuclear Physics

lifetime measurements:
 already with ~ 10 pps

visions:

- test predictions: r process
 branch to long-lived (~ 10⁹ a)
 superheavies (Z≥110)
 - \rightarrow search in nature ?
- improve formation predictions ei for U, Th
 - recycling of fission fragments in r-process loops ?

Nuclear Astrophysics - Indirect methods 1. with RIBs: Steps at ELI-NP

- RNB production: mechanism → study production w. spectrometer(s), w. gas-filled separator ?!
- **RNB separation** momentum achromat + velocity filter ?!
- Secondary beam preparation Filters?! Reacceleration?!
- Secondary reaction target station
- **Detection** complex array(s): gas, Si, γ , PID, position sensitive, ...
- Extract NS information difficult theory calc: structure and reactions
- (Normalization) may need absolute values from elsewhere
- NA interpretation theory support again!
- **Comparison** with direct measurements/ normalization develop strong program of direct measurements at the 3 MV tandetron

4 2. Laser-induced "stellar plasma"?!

- Short-lived plasmas w conditions similar to stellar plasmas?!
 - Characterization
 - Nuclear astrophysics: capture reactions on excited states – very imp for quantitative descr of stellar nucleosynthesis, but out of the range of our current experimental possibilities. Can we...?!!
 - How?! What setups?!

CETAL – 1 PW laser to work in 2014, in Bucharest!!!

Topics so far ...

- NA proposals
 - NA in the neutron channel (Utsunomyia)
 - NA with gamma-ray beams (Ugalde et al.)
 - NA with γ -ray beams and OTPC (M. Gai et al)
 - Study on n-rich in the r-proc path (P. Thirolfs, Habs, ...)
 - (γ , γ 'n) reactions (K. Sonnabend et al)
 - Active target TPC (C. Mazzocchi, M. Pfuetzner e.a.)
 - Laser induced rections (A Bonasera, Anzalone, L. T., ...)
 - Indirect reactions with RIBs (Catania group, LT, etc)

Conclusions: Expected Impact of ELI-NP

European laboratory to consistently investigate a very broad range of science domains, from new fields f fundamental physics, new nuclear physics and astrophysics topics, to applications in material science, life sciences and naterials management.

- World-class research infrastructure • (+200 positions of researchers)
- Education high-level training in science and engineering

Nuclear Physics

- Increasing employment opportunities in research, decreasing brain drain
- .ansc charest: we are himes .uabor Bucarch); .rectar FON Lonal Patents * .ive d' c effects on conomic environmer effects on high-ter¹ Knowledge and technology transf ۲ as a primary objective, collabor the local for-profit sector significant expectation Positive d' the local

Time past and time future What might have been and what has been Point to one end, which is always present T.S. Eliot: Burnt Norton (I), Four Quartets (1943)

Phase F

Technical Staff (18 Technical Staff-

Higher education (18)

2018

Status right now (March 2014):

• ELI-NP activities going on:

Civil construction

Lasers

Gamma-ray source – to be signed next week!

TDR (Techn Design Report) under preparation for experiments and equipment

- ELI-NP workshops:
 - April 2-4 experiments with lasers
 - April 16-17 experiments with gamma-ray beam

Status right now (March 2014):

• ELI-NP activities going on:

Civil construction

Lasers

Gamma-ray source – to be signed next week!

TDR (Techn Design Report) under preparation for experiments and equipment

- ELI-NP workshops:
 - April 2-4 experiments with lasers
 - April 16-17 experiments with gamma-ray beam

Carpathian Summer School of Physics Sinaia, Romania, July 13-26, 2014

livius.trache@nipne.ro cssp14@nipne.ro

Website http://cssp14.nipne.ro

