A direct underground study of the ¹⁷O (p,α)¹⁴N reaction at energies of astrophysical interest

Carlo Bruno On behalf of the LUNA collaboration

Russbach Winter School 2014

ASTROPHYSICAL ASPECTS CNO Cycle (p,α) (p,γ) 130 18c 13N 150 Ш 18**O** 120 160

¹⁷O(p, α)¹⁴N reaction

- At branching point between CNO-II and CNO-III
- In competition with gamma channel
- Critical for ¹⁷O and ¹⁸F abundances
- Important in a variety of scenarios (AGB, Classical Novae...)

AGB stars (T=0.03-0.1 GK)

- The CNO cycle takes place in the heart of the star
- Poorly-understood extra mixing process carries CNO products to outer layers
- To understand this process $^{17}O/^{16}O$ is crucial

Classical Novae (T=0.1-0.4 GK)

- Binary systems
- An explosion occurs periodically $(10^3 10^4 \text{ years})$
- ¹⁷O among ejecta (primary source in our galaxy?)
- ¹⁸F abundance helps constrain astrophysical models

NUCLEAR PHYSICS ASPECTS

- Q-value = 1.2 MeV. Expected alpha energy = 1 MeV
- Two narrow resonances at 70 and 193 keV (Lab. frame)

STATE OF THE ART

193 keV RESONANCE

Authors	Resonance strength	Approach
Chafa (2005-07)	(1.6±0.2) x10 ⁻³ eV	Indirect (activation)
Moazen (2007)	(1.70±0.15) x10 ⁻³ eV	Indirect (inverse kinematics)
Newton 700077000778007	(1.66±0.17) x10 ⁻³	Direct
Berheide (1992)	< 8x10 ⁻¹⁰ eV	Direct (upper limit)
Blackmon (1995)	5.5 ^{+1.8} -1.5 x10 ⁻⁹ eV	Direct
Sergi (2010)	3.66 ^{+0.76} -0.64 x10 ⁻⁹ eV	Indirect (Trojan horse)

MEASURING THE 70 KEV RESONANCE IS OUR

THE LUNA EXPERIMENT -

THE LUNA EXPERIMENT

will be significantly reduced, allowing a direct measurement

06/13

EXPERIMENTAL SETUP -

EXPERIMENTAL SETUP

Targets are 95% enriched in ¹⁷O or ¹⁸O, 5 keV thick and withstand

THE FOILS

- Back-scattering protons will hit the silicon detectors
 - 1. Will damage detectors
 - 2. Will increase background
- Foils mounted to shield detectors

Foils must be:

- 1. Thick to stop protons
- 2. Thin to let alphas through
- 3. Homogeneously thick, rugged, free of pinholes ...

Finding a compromise was difficult

- Aluminised Mylar, roughly 2µm thick, was chosen
- For 193 keV resonance: 200 keV protons stopped and
- 1 MeV alpha particles detected with 250 keV

- Resonant energy: 151 keV (lab. frame)
- Very well-known, high Q-value (3979 keV), high rates (kHz)
- Used to commission the setup
- LUNA preliminary results in excellent agreement with literature
- Becker 95*, very precise, considered as reference

*Becker et al 7 Phys A 351 453-465 1995

- Resonance strength relatively well-known
- 1~2 alphas/s/detector at ~250 keV
- Very similar conditions to final objective (70keV resonance)
- Clear peak visible in spite of low energy and rate
- Preliminary results are in agreement with literature
- Commissioning complete

70 keV RESONANCE - EXPECTATIONS

Assuming:

- 1. 10% total efficiency (simulated)
- 2. Targets with 95% ¹⁷O enrichment
- 3. 100µA beam intensity
- 4. 1 neV resonance strength (conservative)
- 5. $2 \mu m$ aluminised Mylar foils

We get:

- 0.1 counts/hour/detector or 2 counts/hour in total
- Detected alpha energy around 200 keV

Considerations:

- Very low energy and rate: the background must be under control
- A long time (months) is necessary to see the signal

70 keV RESONANCE - PREPARATIONS

- Detectors calibrated with alphas from 151 and 193keV resonances
 - energy depends on foil thickness
- Thickness estimated by energy loss in foils
 <u>thickness</u> depends on <u>calibration</u>
- Minimisation procedure used to find both
- Result checked with ${}^{6}Li(p,\alpha){}^{3}He$
- A region of interest for the 70keV signal can be defined

17/18O+p peaks

6Li+p peaks

- 50C on-resonance, Both Stelles Shance, 130h without beam
- No evidence of beam-induced background
- 10 Evidence of a counting excess in the region of _____On-resonance interest (71keV) 8 units Natural background RELIMINAR Arbitrary ⁵ ⁵ 2 1 0 100 200 300 400 500 600 700 800 Energy [keV]

- Measurement of the elusive ¹⁷O(p,α)¹⁴N reaction started
- Setup commissioning complete
- Evidence of a counting excess in the energy region where the signal is expected
- More statistics is required to draw conclusions

THE LUNA COLLABORATION

A.Best, A.Formicola, M.Junker, INFN, LNGS, Italy
D.Bemmerer, T.Szucs, Forschungszentrum Dresden-Rossendorf, Germany
C.Broggini, A.Caciolli, R.De Palo, R.Menegazzo, INFN, Padova, Italy
C.Gustavino, INFN, Roma La Sapienza, Italy
Zs.Fülöp, Gy.Gyurky, Z.Elekes, E.Somorjai, Institute of Nuclear Research
(ATOMKI), Debrecen, Hungary
O.Straniero, Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli,

Italy C.Rolfs, F.Strieder, H.P.Trautvetter, Ruhr-Universität Bochum, Bochum, Germany M.Aliotta, <u>C.G.Bruno</u>, T.Davinson, D.A.Scott, The University of Edinburgh, UK F.Cavanna, P.Corvisiero, P.Prati, Università di Genova and INFN, Genova, Italy A.Guglielmetti, D.Trezzi, Università di Milano and INFN, Milano, Italy G.Imbriani, Università di Napoli "Federico II" and INFN, Napoli, Italy A.Di Leva, INFN, Napoli, Italy G.Gervino, Università di Torino and INFN, Torino, Italy

THANK YOU FOR YOUR ATTENTION!

THE COLLIMATORS

