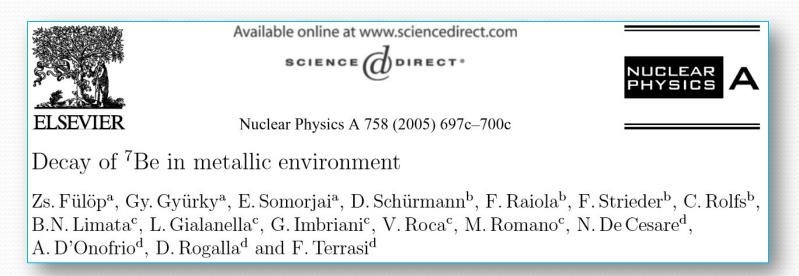
Decay of ⁶¹Cu in oxide and metallic environment


Aleksandra Cvetinović

Department of Low and Medium Energy Physics (F-2) Jožef Stefan Institute, Slovenia

> 11th Rußbach School on Nuclear Astrophysics March 09-15.2014., Rußbach

Motivations and previous results

- For the most radionuclides that decay by electron capture or internal conversion, the probability for these processes is usually insensitive to the nuclear environment
- The decay rate depends only very weakly on the electron wave functions
- Be-7 decays only by electron capture

- Kettner et al. predicted a possibility to observe:
 - shorter half-life for α and β^+ -decay
 - longer half-life for β -decay and electron capture

Journal of Physics G: Nuclear and Particle Physics

High-Z electron screening: the cases ⁵⁰V(p,n)⁵⁰Cr and ¹⁷⁶Lu(p,n)¹⁷⁶Hf

K U Kettner¹, H W Becker², F Strieder² and C Rolfs²

¹ Fachhochschule Bielefeld, Bielefeld, Germany

² Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany

K U Kettner et al 2006 J. Phys. G: Nucl. Part. Phys. 32 489. doi:10.1088/0954-3899/32/4/007

CPC(HEP & NP), 2011, **35**(5): 449–452

Chinese Physics C

Vol. 35, No. 5, May, 2011

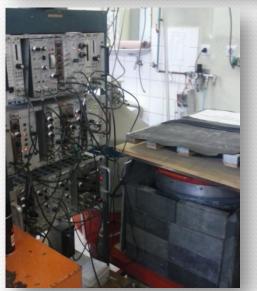
Environmental effects on nuclear decay rates^{*}

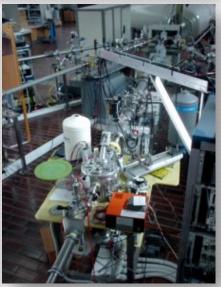
ZHOU Shu-Hua(周书华)¹⁾

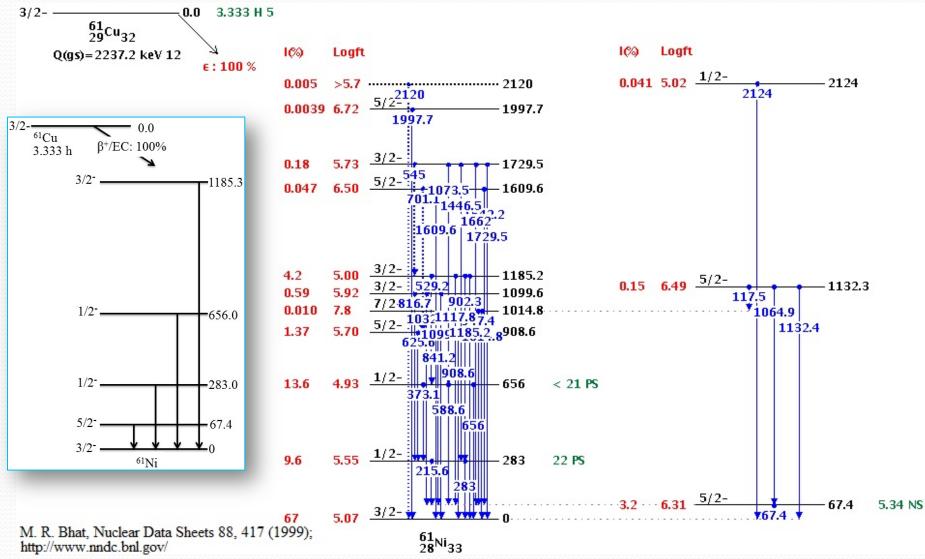
China Institute of Atomic Energy, P. O. Box 275(18), Beijing 102413, China

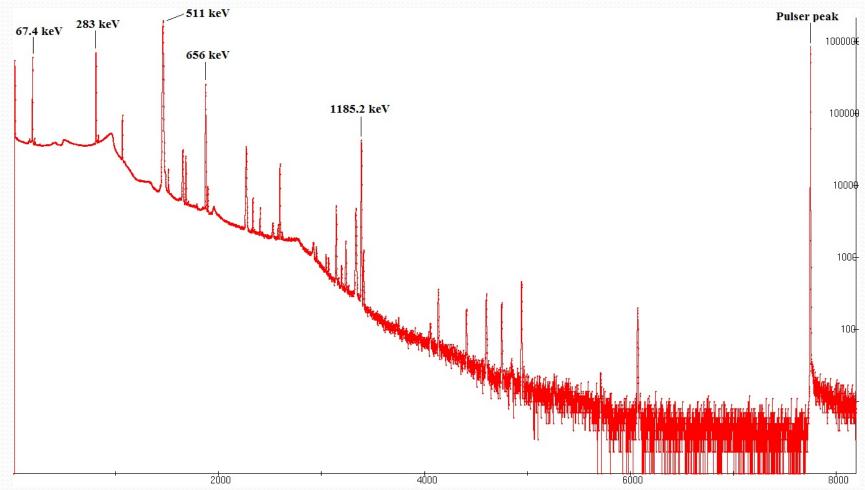
If the half-life of radioactive nuclei depends on the electron density at the nucleus due to the physical or the chemical state of the atoms

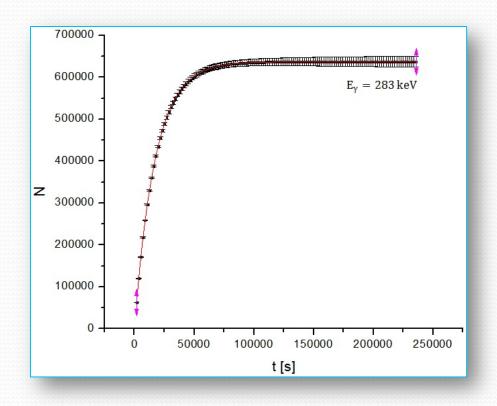
Different half-life in stellar plasma than in the laboratory

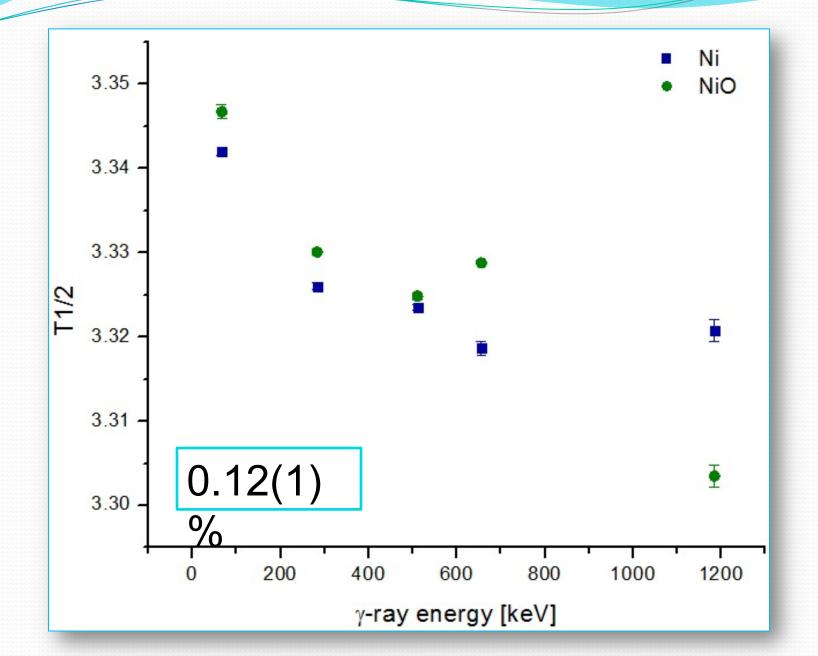

Different probability for nucleosynthesis in stars


Experiment


^ 1^{01} $A \rightarrow A^{+} p$ $A \rightarrow$

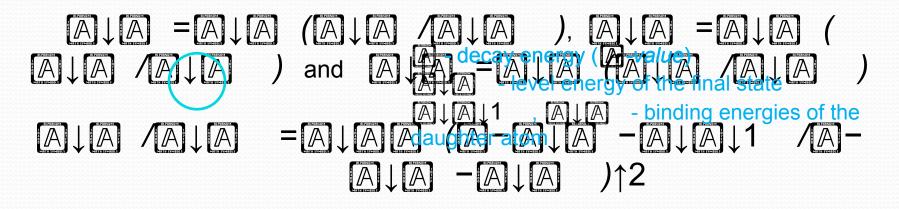

- Oxide and metallic nickel targets were activated for 12 hours by proton beam
- Beam energy: 2.48 MeV
- p accelerated by the 2 MV Tandetron accelerator at Jožef Stefan Institute
- Decays were recorded in lowbackground laboratory every half hour for three days




Half-life is determined from decay law:

 $(A) = A \downarrow 0 (1 - A \uparrow - A A), \qquad A = A A 2/A \downarrow 1/2$

• $\mathbb{A}(\mathbb{A})$ is the number of decays occurred at time t


- Table value ▲↓1/2 of ⁶¹Cu: 3.333
 (5) h
- Half-life in nickel-oxide: 3.3280 (2) h
- Half-life in nickel: 3.3238 (2) h

- Electronic configuration of nickel in the ground state is: [Ar] 3d⁸4s²
 - The weakest bound electrons are from shell 4s and over them nickel can build chemical bond with an oxygen atom
 - In NiO this electrons cannot contribute to the electron capture, but in Ni they can
 - If we take into account the electron capture from N shell, for the fractional capture probabilities holds:

 $\begin{array}{c} \mathbb{A} \downarrow \mathbb{A} \mathbb{A} = \mathbb{A} \downarrow \mathbb{A} \downarrow 1 \uparrow 2 / \mathbb{A} \downarrow \mathbb{A} \uparrow 2 \cdot \mathbb{A} (\mathbb{A} \downarrow 1) / \mathbb{A} \\ (\mathbb{A}) \cdot [1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1)], \\ \mathbb{A} \downarrow \mathbb{A} \mathbb{A} = \mathbb{A} \downarrow \mathbb{A} \downarrow 1 \uparrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1 \uparrow 2 \cdot \mathbb{A} (\mathbb{A} \downarrow 1) / \\ \mathbb{A} (\mathbb{A} \downarrow 1) \cdot [1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1) / 1 + (\mathbb{A} \downarrow \mathbb{A} \downarrow 2 / \mathbb{A} \downarrow \mathbb{A} \downarrow 1)]$

- $A \downarrow A \downarrow 1 \uparrow 2 / A \downarrow A \uparrow 2$, etc. the ratios of the radial wave functions
- $\mathbb{A}(\mathbb{A} \downarrow 1) \mathbb{A}(\mathbb{A})$, etc. the ratios of the correction factors for overlap and exchange
- $A \downarrow A \downarrow 2$ $A \downarrow A \downarrow 1$, etc. are the subshell ratios

Conclusions

- For difference in half-live time in metallic compared to oxide targets from the experiment we got 0.12(1) %
- For the variations in electron densities from the theoretical model we got 0.035(3) %
- We are not sure what is the electronic configuration of copper in the nickel lattice
- In atomic beryllium decay rate is much more sensitive to chemical state of the atoms than in copper

Thank you for your attention!