

The Trojan Horse Method and its main experimental features

Livio Lamia

Dept. of Physics and Astronomy, University of Catania

INFN-LNS, Catania

Direct Measurements in Nuclear Astrophysics and related difficulties

From Stars to the laboratory: direct measurements of charged-particle induced

reactions By considering the typical temperatures of some 10^6 K at which burning (p, α) reactions typically occur in stellar environments, the Gamow peak is at about (for boron case)

E₀=1.22(Z²_xZ²_yµT₆²)^{1/3} keV ≈ 10 keV

Thus the goal of the experimentalist is to give a measurement of the burning reaction cross section right in correspondence of the energy region of interest for astrophysics.....

Experimental efforts for nuclear astrophysics

Several efforts have been made in the last years in order to **improve the signal-to-noise ratio** for low-energy cross section measurement. Among them, we have:

MPROVEMENTS TO INCREASE THE - IMPROVEMENTS TO REDUCE NUMBER OF DETECTED PARTICLES THE BACKGROUND

Use of laboratory with natural shield - π dates of one of the states of the states

lewscorlaragoretat appalateras (recoity Mass Separator)

Direct Measurements in Nuclear Astrophysics and related difficulties: electron screening phenomena

In the accurate measurements for the determination of nuclear cross-sections at the Gamow energy, in laboratory, enhancement $f_{lab}(E)$ –factor in the astrophysical $S_b(E)$ -factor has been found. Extensively discussed in several works (e.g. Assembaum et al., 1987)

 $S_{Sh} \propto S_b \cdot e^{rac{\pi \eta U_e}{E}}$

Electron screening: present (unsatisfactory)

Reaction	U _{ad} (eV)	Uexp (eV)	Reference
$^{6}\mathrm{Li}(\mathrm{p},\alpha)^{3}\mathrm{He}$	186	440 ± 150	[Engstler et al.(1992)]
$^{6}\text{Li}(d,\alpha)^{4}\text{He}$	186	330 ± 120	[Engstler et al.(1992)]
$\mathrm{H}(^{7}\mathrm{Li},\alpha)^{4}\mathrm{He}$	186	300 ± 160	[Engstler et al.(1992)]
$^{2}\mathrm{H}(^{3}\mathrm{He,p})^{4}\mathrm{He}$	65	109 ± 9	[Aliotta et al.(2004)]
$^{3}\text{He}(^{2}\text{H,p})^{4}\text{He}$	120	219±7	[Aliotta et al.(2004)]
$H(^{9}Be,\alpha)^{6}Li$	240	900 ± 50	[Zahnow et al.(1997)]
$H(^{11}B,\alpha)^8Be$	340	430 ± 80	[Angulo et al. (1993)]

Large discrepancy between theoretical and experimental values for a large number of reactions

Some idea...

Values of U_e were estimated for several reactions by means of comparison between direct data with extrapolations Possible explanations:

- lack of knowledge for energy loss at E<100 keV;
- extrapolation of $S_b(E)$ at astrophysical energies;
- theoretical models of electron screening (atomic physics and/or solid state physics)
 - > An independent measure of U_e is needed;
 - The bare nucleus astrophysical S(E)-factor needs to be accurately known

StroFla Electron screening: laboratory.vs.stars **Direct Measurements** 9.5 Stellar Screening *≠* Laboratory Screening 3 He + 2 H \rightarrow p + 4 He 8.5 Experimental S(E) (MeVb) Data 7.5 (Shielded) 6.5 An independent determination of S_b(is necessary! 5.5 10 S_b (Bare) edure An experimenta of U_ea

- a determination (applications)
- to study electron screening in laboratory conditions and then in stellar plasma

Correction for stellar screening (Debye-Hückel theory)

The Trojan Horse Method (THM) (see C. Spitaleri et al., PAN 2011)

The THM is an indirect technique allowing one to extract the bare-nucleus S-factor for the charged-particle induced reaction

A+x→c+d

at astrophysical energies by performing a surrogate experiment in which a suitable three body reaction

A+a→c+d+s

is investigated. The nucleus

. With

reenact direct measurements in which

Indirect tools for nucl.astroph.: The Trojan Horse

Meta Qf (**T+M**) c + d + s reaction between the projectile A and the target a can be described by the polar-diagram

- ✓ Upper pole describes the break-up process of nucleus *a* in its "x" and "s" constituents. <u>The break-up is</u> <u>Quasi-Free if *s* maintains in the exit channel the same momentum distribution as in *a*;
 </u>
- ✓ Lower pole describes the astrophysically relevant two-body reaction A(x,c)d, induced at the c.m. energy E_{c.m.}=E_{cd}-Q_{2body};

✓ The nucleus *a* (the so-called "TH-nucleus") is chosen because of:

- its large amplitude in the $a=x \oplus s$ cluster configuration;
- its relatively low-binding energy;
- Its known x-s momentum distribution |Φ(p_S)|² in a.

✓ In this picture, "s" behaves as spectator while nucleus "x" is the participant of the astrophysical A(x,c)d reaction (Impulse

Indirect tools for nucl.astroph.: The Trojan Horse

 $\mathbf{KF} \cdot | \Phi(\vec{p_s}) |^2$

а

Α

dσ

١N

S

Х

d

- **MetA(a,d)** Job duced at energies of the order of 20-50 MeV, higher than the Coulomb barrier in the entrance A-a channel.
- The A-x interaction occurs directly in the nuclear field, thus **Coulomb suppression effects are naturally removed** (a,cd)s process can be derived in the simple PWIA approaction $d^3\sigma$

 $dE_c d\Omega_c d\Omega_d$

Indirect tools for nucl.astroph.: The Trojan Horse

- studying an astrophysically relevant A(x,c)d reaction in the whole energy range for astrophysics by using only a beam energy;
- measuring the corresponding bare-nucleus S(E)-factor, without Coulomb suppression and electron screening effects;
- overcoming extrapolation procedures typical of direct measurements
- establishing the influence of both low-energy or sub-threshold resonances affecting the total reaction rate.

THM needs:

- ❑ validity test → devoted studies have been or are currently performed at high energies;
- □ introduction of penetrability function → to determine the S(E)factor;
- □ normalization to direct data \rightarrow to extract THM data in absolute units

The Trojan Horse Method (THM): a "To-Do List" for experimentalists

- Choose the 2-body astrophysical reaction to be studied;
- 2) Choose the more appropriate TH nucleus;
- 3) Choose the 3-body reaction;
- 4) Selection of the 3-body channel;
- 5) Selection of the reaction mechanism;
- 6) S(E)-factor measurement of the 2body reaction;
- 7) Departion rate colculation

The indirect study of the ¹¹B(p,α_0) ⁸Be via the THM applied to the ²H(¹¹B, α_0 ⁸Be)n reaction

THM→ Baur et al. PLB, 1986; Spitaleri et al., 1990; Cherubini et al. ApJ 1996, Spitaleri et al. PRC 1999; Tumino et al. PRC 2003, Spitaleri et al. PRC 2004, Spitaleri C. et al., Phys. Atom. Nuclei, 74, 2011 and ref. ther....

THM recent applications → La Cognata et al., ApJ 2013; Pizzone et al., PRC 2013; Tumino et al. ApJ 2013, Lamia et al. ApJ 2013; Gulino et al. PRC 2012; Sergi et al. PRC 2010;....

Study of the ¹¹B(p,α)⁸Be reaction (Q=8.59 MeV) through the QF ²H (¹¹B,α⁸Be)n reaction (Q=6.36 MeV);

- $\Box E_{beam}(^{11}B)=27 \text{ MeV \& } I_{beam}(^{11}B)=2-5 \text{ nA};$
- □ Target thickness $CD_2 \sim 190 \ \mu g/cm^2$;

□ Use of standard position sensitive silicon detectors, placed at about 300 mm from the target position;

□ Displacement of the detectors around the *QF*-angular range

Detection of alpha and beryllium particles. No detection of the exiting

Position sensitive silicon detectors (PSD) and their use for THM purpose

Typical Dimensions→ 50*10 mm²

Thickness→ from 500 µm to 1000 µm

Energy resolution → 1% (5 MeV alpha-source, maximum)

Spatial resolution → 0.5 mm (FWHM) (maximum)

Placed at 60-30 cm far from the target→0.1°-0.2° angular

Detectors placement around the quasifree angles: what does it mean?

(5.10)

For a deeper discussion, by considering the energy and momentum conservation laws

for a general reaction A(a,c d)s, it is possible to write the following system 5.9:

$$\begin{cases} E_{\mathsf{A}} + Q = E_{c} + E_{\mathsf{d}} + E_{s} \\ \overrightarrow{P}_{\mathsf{A}} = \overrightarrow{P}_{c} + \overrightarrow{P}_{\mathsf{d}} + \overrightarrow{P}_{s} \end{cases}$$
(5.9)

where E_i and P_i represent the values of energy and momentum for the *i*-th particle. If the relative motion of the spectator particle occurs mainly with l=0, it will possible to assume $P_s=0$, that is $E_s=0$. By using this assumption, the system 5.9 can be

written as

$$\begin{cases} E_a + Q = E_c + E_{\rm cd} \\ P_a = P_c cos\theta_c + P_{\rm cd} cos\theta_{\rm cd} \\ 0 = P_c sen\theta_c + P_{\rm cd} sen\theta_{\rm cd} \end{cases}$$

Thus, it is possible to determine a couple of angles for the two particles "c" and "d" corresponding to zero-momentum for "s"

Detectors placement around the quasifree angles: what does it mean?

Table 5.1: QF-angular pair in the hypothesis of a break-up process for the ${}^{2}\text{H}({}^{11}\text{B},\alpha{}^{8}\text{Be})$ induced with an energy of $\text{E}_{11B}=\text{E}_{beam}=27$ MeV.

Position sensitive silicon detectors (PSD): angular and energy calibration

Selection of the 2->3 ²H(¹¹B,α₀⁸Be)n ⁸Bradetermination

⁸Be(g.s.) decays in 2 alphas (Qth_{dec} 92 keV). These have been detected in coincidence on a Dual Position Sensitive Detector,

Selection of the 2->3 ²H(¹¹B,α₀⁸Be)n channel: experimental Q-value and kinematical

After the identification of ⁸Be events and in the hypothesis of an undetected neutron particle, the **experimental Q**_{value} has been reconstructed for the detected events. The clear peak at about 6.36 MeV marks the occurrence of the ²H

The ²H(¹¹B,α₀⁸Be)n reaction channel: are the data contaminated by Sequential Mechanism (SM)?

The same particles α , ⁸Be and neutron can be produced via the decays of intermediate nuclei. Study of the relative energies is then needed.

Are Sequential Mechanism (SM) present in THM

reaction mechanism.

Selection of the QFmechanism: data as a

- function of botained with different condition on the *undetected* neutron momentum;
- The yield is enhanced around lowneutron momenta and decrease for p_n>50 MeV/c. This finally underlines that the experimental yield is affected by the behaviour of the p-n momentum distribution in the deuteron (having its maximum at 0 MeV/c);
- 3) The coincidence yield appears strongly influenced by the momentum-distribution of the exiting neutron. This strong correlation is an unambiguous signature of the presence of the QF-reaction

QF selection via Momentum Distribution

✓ The PWIA approach allows one to exctract the experimental momentum distribution via the relation:

QF selection via Momentum Distribution investigation: PWIA vs DWBA Nucleare $\Phi(p_n)|^2$ (arb.units) $\left|\Phi(p_n)\right|^2$ (arb.units) **PWIA FRESCO** calculation 0.5 0.5 30 40 50 60 10 20 30 40 50 60 p_n (MeV/c) p_n (MeV/c) $|\Phi(\vec{p}_n)|^2 = \frac{1}{2\pi} \sqrt{\frac{ab(a+b)}{(a-b)^2}} \frac{1}{a^2 + p_n^2} - \frac{1}{b^2 + p_n^2}$ Exp. Fit→ FWHM=65±10 MeV/ Hulthén→FWHM=58 MeV/c

Data selection: from the ${}^{2}H({}^{11}B,\alpha_{0}{}^{8}Be)n$ to the ${}^{11}B$

extracted, by means of the derived

$$\theta_{\rm cm} = \arccos \frac{(\mathbf{v}_B - \mathbf{v}_p) \cdot (\mathbf{v}_{\rm Be} - \mathbf{v}_\alpha)}{|\mathbf{v}_B - \mathbf{v}_p| |\mathbf{v}_{\rm Be} - \mathbf{v}_\alpha|},$$

Center-of-mass alpha-⁸Be emission angle.

Data selection: from the ${}^{2}H({}^{11}B,\alpha_{0}{}^{8}Be)n$ to the ${}^{11}B$

- (DAy) no events belonging to the condition |p_n|<30 MeV/c (quasi-free selection) will be taken into</p>
- Account: By using the simple PWIA formulation, the HOES cross section can be obtained via the factorization:

$$\frac{d\sigma^{N}}{d\Omega} \propto \frac{d^{3}\sigma}{d\Omega_{\alpha} d\Omega_{8Be} dE_{cm}}$$

$$\frac{d\sigma^{N}}{KF \cdot |\Phi(p_{n})|^{2}}$$

✓ The energy in the center-ofmass ¹¹B-p is determined by the relation: E_{CM}=E_{αBe}-Q₂=E_{αBe}-8.59 MeV

 No penetrability or electron screening effects influence the TH "bare-nucleus" cross section.

Energy Resolution on E_{cm}: evaluation via error

PHM allows one to determine the astrophysically relevant 2body reaction at energies:

$$E_{c.m.} = E_{\alpha Be} - Q_{2body} = E_{\alpha Be} - 8.59 \text{ MeV}$$

However, the variable $E_{\alpha Be}$ represents the relative energy between the detected α and Be particle, thus:

detected
$$\alpha$$
 and \overrightarrow{Be} particle, thus:

$$E_{\alpha Be} = \frac{\left(\vec{p}_{\alpha Be}\right)^{2}}{2\mu} = \frac{\left(\vec{p}_{\alpha} - \vec{p}_{Be}\right)^{2}}{2\mu} = \frac{\left(\vec{p}_{\alpha} - \vec{p}_{Be}\right)^{2}}{2\mu} = 0.035$$

$$\frac{\left(p_{\alpha}^{2} + p_{Be}^{2} - 2p_{\alpha}p_{Be} \cdot \cos\theta_{\alpha Be}\right)}{2\mu} = 0.035$$

$$\sigma_{E_{\alpha Be}} = \sqrt{\left(\frac{\partial E_{\alpha Be}}{\partial E_{\alpha}}\right)^{2}} \delta E_{\alpha}^{2} + \left(\frac{\partial E_{\alpha Be}}{\partial E_{Be}}\right)^{2}} \delta E_{Be}^{2} + \left(\frac{\partial E_{\alpha Be}}{\partial \theta_{\alpha}}\right)^{2} \delta \theta_{\alpha}^{2} + \left(\frac{\partial E_{\alpha Be}}{\partial \theta_{Be}}\right)^{2} \delta \theta_{Be}^{2}$$

(Me<) م

Considering an energy resolution of about 1% and a 0.1°-0.2° on angular resolution, an average error of about 40 keV is expected on the quantity $E_{c.m.}$.

¹¹B(p,α₀)⁸Be: TH S(E)-factor determination

 Extraction of the bare-nucleus S(E)factor: <u>S(E) = E*P₁σ^N(E)*exp(2πη)</u>

-9Be & 5He (SM) evaluation;

-Separation between resonant I=1 (16.106 MeV ¹²C) and no-resonant contribution;

-Integration via angular distributions;

-Smearing procedure for the direct data (40 keV energy resolution);

-Normalization between 400-600 keV's;

roFisi

Panel a) \rightarrow The deuteron wave function (including s and d state) in deuteron wave function

How much the d-state component in deuteron alters the THM result?

FIG. 9. (Color online) The ${}^{11}B(p,\alpha)^8$ Be case: The discrepancy ϵ , as given in Eq. (13) (blue line), is shown as the center-of-mass energy $E_{\rm c.m.}$ varies. The higher and lower value of ϵ are also marked (blue dot-dashed line).

D-wave as

Promeentum the V. A. Babenko, Phys. At. Nucl. 74, 352 (2011) R. J. Adler et al., Phys. Rev. C 16, 3 (1977).

S(E) _{sh} leaving U _e parameter	=S(E)_b×exp(πηU as the only free	e/	$2^{-1} \underbrace{U_{e}^{T} \underbrace{U_{e}^{T}}_{T} $
¹¹ B(p,α ₀) ⁸ Be	S(0)	U _e	
ТНМ	2.07±0.41 (MeV b)	472±160 eV	10 ⁻²
Becker et al., 1987	2.10±0.13 (MeV b)		Lamia L. 2012
Angulo et al.,		430±80 eV	

¹¹B(p, α_0)⁸Be: electron screening potential U_e determination via the TH

The TH S(E)-factor (non-resonant) can be used for evaluating the electron screening potential;

The shielded direct data can be fitted via the relation:

'n U ee	e/	$U_e^{THM} = 472 \pm 160 \text{ eV}$
	U _e	
eV	472±160 eV	10 ⁻² 10 ⁻¹
€V		Lamia L. et al, JpG, 2012

Recent TH results: Coulomb barrier

PHYSICAL REVIEW C 78, 064001 (2008)

Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method

Recent TH results: pole-invariance

PHYSICAL REVIEW C 87, 025805 (2013)

Updated evidence of the Trojan horse particle invariance for the ${}^{2}H(d, p){}^{3}H$ reaction

 R. G. Pizzone,¹ C. Spitaleri,^{1,2} C. A. Bertulani,³ A. M. Mukhamedzhanov,⁴ L. Blokhintsev,⁵ M. La Cognata,¹ L. Lamia,² A. Rinollo,^{1,*} R. Spartá,^{1,2} and A. Tumino^{1,6} ¹Laboratori Nazionali del Sud-INFN, Catania, Italy
 ²Dipartimento di Fisica e Astronomia, Università degli studi di Catania, Catania, Italy
 ³Texas A&M University Commerce, Commerce, Texas, USA ⁴Texas A&M University, College Station, Texas, USA
 ⁵Institute of Nuclear Physics, Moscow State University, Russia Kore, Enna, Italy

Recent TH results: CNO reactions

New high accuracy measurement of the ${}^{17}O(p,\alpha){}^{14}N$ reaction rate at astrophysical temperatures

M. L. Sergi,^{1,*} C. Spitaleri,^{1,†} M. La Cognata,¹ A. Coc,² A. Mukhamedzhanov,³ S. V. Burjan,⁴ S. Cherubini,¹ V. Crucillá,¹ M. Gulino,¹ F. Hammache,⁵ Z. Hons,⁴ B. Irgaziev,⁶ G. G. Kiss,¹ V. Kroha,⁴ L. Lamia,^{1,*} R. G. Pizzone,¹ S. M. R. Puglia,¹ G. G. Rapisarda,¹ S. Romano,¹ N. de Séréville,⁵ E. Somorjai,⁷ S. Tudisco,¹ and A. Tumino^{1,‡} ¹Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Università di Catania, and INFN-Laboratori Nazionali del Sud, Catania, Italy
²Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR 8609, CNRS/IN2P3 and Université Paris Sud 11, Bâtiment 104, F-91405 Orsay Campus, France
³Cyclotron Institute, Texas A&M University College Station, Texas, USA
⁴Nuclear Physics Institute of ASCR Rez near Prague, Czech Republic
⁵Institut de Physique Nucléaire, UMR-8608, CNRS/IN2P3 and Université Paris-Sud XI, F-91406 Orsay, France
⁶GIK Institute of Engineering Sciences and Technology, Topi District, Swabi NWFP, Pakistan

stroFle

Nuclear

Recent TH results: n-destroying

PHYSICAL REVIEW C 87, 012801(R) (2013)

Suppression of the centrifugal barrier effects in the off-energy-shell neutron + ¹⁷O interaction

M. Gulino,^{1,2} C. Spitaleri,^{1,3} X. D. Tang,⁴ G. L. Guardo,^{1,3} L. Lamia,^{1,3} S. Cherubini,^{1,3} B. Bucher,⁴ V. Burjan,⁵ M. Couder,⁴ P. Davies,⁴ R. deBoer,⁴ X. Fang,⁴ V. Z. Goldberg,⁶ Z. Hons,⁵ V. Kroha,⁵ L. Lamm,^{4,*} M. La Cognata,¹ C. Li,⁷ C. Ma,⁴ J. Mrazek,⁵ A. M. Mukhamedzhanov,⁶ M. Notani,⁴ S. O'Brien,⁴ R. G. Pizzone,¹ G. G. Rapisarda,^{1,3} D. Roberson,⁴ M. L. Sergi,^{1,3} W. Tan,⁴ I. J. Thompson,⁸ and M. Wiescher⁴ ¹INFN Laboratori Nazionali del Sud, Catania, Italy ²Università degli Studi di Enna "KORE", Enna, Italy ³Dipartimento di Fisica ed Astronomia, Università degli Studi di Catania, Catania, Italy ⁴Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Indiana, USA ⁵Nuclear Physics Institute of ASCR, Rez, Czech Republic ⁶Cyclotron Institute, Texas A&M University, College Station, Texas, USA ⁷China Institute of Atomic Energy, Beijing, China ⁸Lawrence Livermore National Laboratory, Livermore, California, USA

