On the existence of high-Z electron screening in metals

Matej Lipoglavšek

Jožef Stefan Institute, Ljubljana, Slovenia

Russbach, March 2014

Nuclear Reactions at Low Energies

Due to Coulomb repulsion the cross section σ for charged particle induced nuclear reactions drops rapidly with decreasing beam energy.

$$\sigma(E) = \frac{S(E)}{E} e^{-2\pi\eta},$$

where $\eta = Z_1 Z_2 e^2 / 4\pi \epsilon_0 \hbar (2E/\mu)^{1/2}$ 0.001 is the Sommerfeld parameter. Exponential (Gamow) factor 0.0001 - approximates barrier penetration probability. G. A ⁶⁰Ni(p,γ)⁶¹Cu Cross Section

G. A. Krivonosov et al., Izv. Akad. Nauk SSSR **41** (1977) 2196. C. I. W. Tingwell et al., Nucl. Phys. **A496** (1989) 127.

Electron Screening

where U_e is the screeening potential.

H. J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys. A **327** (1987) 269 citations (Web of Science, March 2014).

 $\frac{R_n}{R_a} \approx 10^{-5} \Rightarrow U_e = \frac{e^2}{4\pi\varepsilon_0 R_a} = 27 \text{ eV for d+d reaction}$

for d(d,p)t reaction from F. Raiola et al., Eur. Phys. J. A19 (2004) 283.

	Material	U_e	Solubility	$n_{\rm eff}$ (b)	$n_{\rm eff} ({\rm Hall})^{(\rm d)}$
		(eV) ^(b)	$1/x^{(c)}$		
Metals					
	Be	180 ± 40	0.08	0.2 ± 0.1	(0.21 ± 0.04)
	Mg	440 ± 40	0.11	3.0 ± 0.5	1.8 ± 0.4
	AĬ	520 ± 50	0.26	3.0 ± 0.6	3.1 ± 0.6
	v	480 ± 60	0.04	2.1 ± 0.5	(1.1 ± 0.2)
	Cr	320 ± 70	0.15	0.8 ± 0.4	(0.20 ± 0.04)
	Mn	390 ± 50	0.12	1.2 ± 0.3	(0.8 ± 0.2)
	Fe	460 ± 60	0.06	1.7 ± 0.4	(3.0 ± 0.6)
	Co	640 ± 70	0.14	3.1 ± 0.7	(1.7 ± 0.3)
	Ni	380 ± 40	0.13	1.1 ± 0.2	1.1 ± 0.2
	Cu	470 ± 50	0.09	1.8 ± 0.4	1.5 ± 0.3
	Zn	480 ± 50	0.13	2.4 ± 0.5	(1.5 ± 0.3)
	Sr	210 ± 30	0.27	1.7 ± 0.5	
	Nb	470 ± 60	0.13	2.7 ± 0.7	(1.3 ± 0.3)
	Mo	420 ± 50	0.12	1.9 ± 0.5	(0.8 ± 0.2)
	Ru	215 ± 30	0.18	0.4 ± 0.1	(0.4 ± 0.1)
	Rh	230 ± 40	0.09	0.5 ± 0.2	(1.7 ± 0.4)
	Pd	800 ± 90	0.03	6.3 ± 1.3	1.1 ± 0.2
	Ag	330 ± 40	0.14	1.3 ± 0.3	1.2 ± 0.3
	Cd	360 ± 40	0.18	1.9 ± 0.4	(2.5 ± 0.5)
	In	520 ± 50	0.02	4.8 ± 0.9	
	Sn	130 ± 20	0.08	0.3 ± 0.1	
	Sb	720 ± 70	0.13	11 ± 2	
	Ba	490 ± 70	0.21	9.9 ± 2.9	
	Ta	270 ± 30	0.13	0.9 ± 0.2	(1.1 ± 0.2)
	W	250 ± 30	0.29	0.7 ± 0.2	(0.8 ± 0.2)
	Re	230 ± 30	0.14	0.5 ± 0.1	(0.3 ± 0.1)
	Ir	200 ± 40	0.23	0.4 ± 0.2	(2.2 ± 0.5)
	Pt	670 ± 50	0.06	4.6 ± 0.7	3.9 ± 0.8
	Au	280 ± 50	0.18	0.9 ± 0.3	1.5 ± 0.3
	Tl	550 ± 90	0.01	5.8 ± 1.2	(7.4 ± 1.5)
	Pb	480 ± 50	0.04	4.3 ± 0.9	
	Bi	540 ± 60	0.12	6.9 ± 1.5	

J. Kasagi, Prog. Theo. Phys. Suppl. 154 (2004) 365.

for the d(d,p)t reaction $U_e=310\pm30 \text{ eV} @ 7\% \text{ H/Pd}$

=> concentration dependence

for d(d,p)t reaction from K. Czerski et al., J. Phys. G 35 (2008) 014012.

for zirconium metal U_e =319±3 eV

J. Cruz et al., Phys. Lett. B 624 (2005) 181; J. Phys. G 35 (2008) 014004

K. U. Kettner et al., J. Phys. G 32 (2006) 489.

Measurements @ JSI

Measurements @ JSI

2 MV Tandem van de Graaf accelerator

Electron screening in vanadium

⁵⁰V(p,n)⁵⁰Cr - K. U. Kettner et al., J. Phys. G **32** (2006) 489.

Electron screening in manganese

Aluminum results

1779 keV γ -ray ratio from ²⁷Al(p, γ)²⁸Si reaction

D.C. Turner et al., Nucl. Instr. Meth. B **103** (1995)

Nickel results

Cadmium and indium

Electron screening in implanted metals

Preliminary results:

Target	U _e [keV]	Stoichiometr y
Ni	3.3 ± 0.9	0.0040±0.000 7
Pd	1.5 ± 1.9	0.014±0.001
Pt	2.1 ± 1.2	0.024±0.001

Inverse kinematics: ${}^{1}H({}^{7}Li,\alpha){}^{4}He$

Comparison to previous results

	Stoichiometry		
Targe t	⁷ Li+p	d+d	
Ni	0.004	0.13	
Pd	0.014	0.03	
Pt	0.024	0.06	

Targ et	Re ⁷ Li+p	eaction U p+ ⁷ Li	_e [keV] d+d
Ni	3.3 ± 0.9		0.38 ± 0.04
Pd	1.5 ± 1.9	3.8 ± 0.3	0.80 ± 0.09

d+d F. Raiola et al., Eur. Phys. J. A**19** (2004) 24 p+⁷Li J. Cruz et al., Phys. Lett. B 624 (2005) 18

Conclusions

- Electron screening is important in nuclear astrophysics.
- Large electron screening only happens on implanted nuclei in metallic targets.
- Electron screening is not a static but rather a dynamic effect, so the parameterization with a screening potential is only valid when all electrons are tightly bound.
- The size of the effect is not always proportional to target Z.
- For stellar plasma we really need to understand what happens in the laboratory experiments.

Thanks to: Jelena Gajević, Toni Petrovič, Urša Mikac, Andrej Likar, Žiga Šmit, Matjaž Ver Primož Pelicon, Primož Vavpetič, Drago Brodnik, Aleksandra Cvetinović, Alberto Sanche

Nuclear Structure and Dynamics III

