Reaction studies for the astrophysical γ -process using in beam γ -ray spectroscopy

<u>M. Baldenhofer</u>, J. Mayer, L. Netterdon, P. Scholz, and A. Zilges

11th Russbach School on Nuclear Astrophysics

March 13th, 2014

M. Baldenhofer, IKP, Universität zu Köln, AG Zilges

Reaction studies for the γ process using in beam γ -ray spectroscopy

- 30-35 nuclides are produced by the *p* process
- γ process most important one
- Photodisintegration (γ, α) -, (γ, p) ,- (γ, n) - reactions and β -decays
- Astrophysical sites:

- *p* nuclides around A≈100 are underestimated by network calculations
- Improvements *by narrowing down the possibilities* with measurements of reaction in this region
 - ⁸⁵Rb(p,γ)
 - ⁸⁹Υ(p,γ)
 - ¹¹²Sn(α,γ)

Advantages

- Detection of the prompt γ -quanta and the activation
- Study of stable and radioactive reaction products
- Determination of partial cross sections
- Disadvantages
 - Restricted geometry \rightarrow low efficiency
 - High beam induced background
 - Limited beam current

Setup in Cologne

- 10 MV Tandem accelerator for various ions
- Beam intensities up to 10 μ A (protons) and 1 μ A (α -particles)
- Well defined beam energy (range of serveral keV)

Setup in Cologne

HORUS Spectrometer

- Array of 13 HPGe detectors
- 5 angles realtiv to beam axis
- 5 of the detectors are equipped with BGO shields
- γγ coincidences possible
- Absolute photopeak efficiency 2 % @ 1332 keV

Target chamber

- Build with aluminium and tantalum
- Cooling trap
- RBS detector
- Current read out at three positions (target, chamber, and cup)
- Supression of secondary electrons

A. Sauerwein, PhD thesis 2013, IKP

Transitions to the ground state

• Determination of the total cross section

M. Baldenhofer, IKP, Universität zu Köln, AG Zilges Reaction studies for the γ process using in beam γ -ray spectroscopy

Transitions to the ground state

• Determination of the total cross section

De-excitation of the entry state

• Determination of partial cross sections

Test-measurement:

Determination of the total cross section of ⁸⁵Rb(p,γ) reaction at a proton energy of 4000 keV

Number of reactions

 $O = \frac{1}{Number of projectiles \cdot Number of target nuclei}$

$$\mathbf{O} = \frac{N_R}{N_P \cdot N_T} \checkmark$$

Number of target nuclei

Rutherford Backscattering Spectrometry

- Ion beam on the target
- Detect the energy of the scattered ions
- Spectrum is unique. It depends on the beam energy, the composition and the **thickness** of the target

$$\mathbf{O} = \frac{N_R}{N_P \cdot N_T} \checkmark$$

Number of target nuclei

Simulating the Rutherford Backscattering Spectrum of the target

→ Thickness is the only free parameter

1.95(15)·10¹⁸ Rb nuclei / cm²

Number of Protons / 10s

Number of protons

 Current read out on the target and the target chamber

 \rightarrow 3.71(8)·10¹⁶ Protons

Number of events in a fullenery peak that is caused by a ground state transition.

$$\mathbf{O} = \frac{N_R}{N_P \cdot N_T}$$

- Determine the detector efficiency with ²²⁶Ra, ⁵⁶Co and ²⁷Al(p,γ)
- ${}^{27}Al(p,\gamma)$ -resonance delivers values up to 10.5 MeV
- This resonance needs a exact proton energy of 3674.4 keV
 - → Callibration of the proton beam is possible

$$\mathbf{O} = \frac{N_R}{N_P \cdot N_T}$$

- Consider deadtime
- Determine the angular distribution of the emitted γ-ray
 - → Fit with Legendres polynoms

$$\mathbf{O} = \frac{N_R}{N_P \cdot N_T} = 6.52(92) \text{ mb}$$

Only one proton energy was measured

 \rightarrow Measurement at several proton energies in the near future

¹¹²Sn(α , γ)¹¹⁶Te in beam

- $E_{\alpha} = 10.5 \text{ MeV}, 11 \text{ MeV}, 11.5 \text{ MeV}, and 12 \text{ MeV}$
- Beam currents from 150 nA 200 nA

Partial cross sections can be calculated!

M. Baldenhofer, IKP, Universität zu Köln, AG Zilges

¹¹²Sn(α,γ)¹¹⁶Te

- Reaction product ¹¹⁶Te is not well known
 - \rightarrow Improvement of nuclear structure physics with $\gamma\gamma$ -coincidence

- V. Derya, A. Hennig, J. Mayer,
- L. Netterdon, S. G. Pickstone,
- P. Scholz, M. Spieker, M. Weinert,
- J. Wilhelmy, and A. Zilges

A. Sauerwein

Partial Cross sections

M. Baldenhofer, IKP, Universität zu Köln, AG Zilges Reaction studies for the γ process using in beam γ -ray spectroscopy