A direct measurement of the ²²Ne(p,γ)²³Na reaction at LUNA and at HZDR

Francesca Cavanna Russbach 13/03/2014

Introduction

- The ²²Ne(p,γ)²³Na reaction: astrophysical motivations
- A direct measurement at HZDR Tandetron accelerator
- An ongoing study at LUNA

 nuclear astrophysics deep underground
 LUNA 400 kV setup
 status of the measurement

Astrophysical motivations

 If A ≥ 20 seed nuclei are present in the stellar environment, they can contribute to hydrogen burning

• ²²Ne(p,γ)²³Na is important for the nucleosynthesis

Reaction rate uncertainties

²²Ne(p,γ)²³Na: resonances

	E _{lev} [keV]	E _{res} ^{LAB} [keV]	ωγ [eV]
	8822	29.2	<5.2E-26
	8829.5	37.0	3.1E-15
	8862?	71	disregarded
	8894?	104	disregarded
4	8946	159	6.5E-7
	8972	186	<2.6E-6
	9000?	215	disregarded
	9038.7	256	<2.6E-6
	9072	291	<2.2E-6
	9103	323	<2.2E-6
	9113	333	<3.0E-6
	9147	369	<6.0E-4
1	9171	394.0	<6.0E-4
	9211.02	436	0.065±0.015
	9252.1	479	0.524±0.051
	9396.39	630	0.03±0.01
	9404.8	639	2.8±0.3
	9426.1	661	0.35±0.1

RGB

AGB - Novae

²²Ne(p,γ)²³Na: resonances

	E _{lev} [keV]	E _{res} ^{LAB} [keV]	ωγ [eV]		
	8822	29.2	<5.2E-26		
	8829.5	37.0	3.1E-15	_	
	8862?	71	disregarded		1.4
	8894?	104	disregarded		
86	8946	159	6.5E-7		1.2
Ř	8972	186	<2.6E-6	n rate	
	9000?	215	disregarded	eactio	
	9038.7	256	<2.6E-6	clear r	0.8
	9072	291	<2.2E-6	monu	
	9103	323	<2.2E-6	o ther	0.6
vae	9113	333	<3.0E-6	ution t	
No	9147	369	<6.0E-4	ontribu	0.4
8	9171	394.0	<6.0E-4	ŏ	0.0
AG	9211.02	436	0.065±0.015		0.2
	9252.1	479	0.524±0.051		C
	9396.39	630	0.03±0.01		
	9404.8	639	2.8±0.3		ν.
	9426.1	661	0.35±0.1		ł

²²Ne(p,γ)²³Na: resonances

²²Ne(p,γ)²³Na: resonances

Measurement at the 3 MV Tandetron

- 5 days of beam time
- 3 MV Tandetron accelerator at HZDR
 - Ebeam: 0.1 3MV
 - 🗸 Ibeam: 7 μA
- Supported by the SPIRIT project and INFN
- Measurement of the resonance at Elab=436 keV

Measurement at the 3 MV Tandetron

Targets and setup

- Solid targets prepared at Legnaro National Laboratory implanter
 - ²²Ne implanted on Ta backing (27 mm diameter, 0.22 mm thickness)
 - Implantation energies: 150 keV (dose: 1.5 10¹⁷ at/cm²) and 70 keV (dose: 0.7 10¹⁷ at/cm²)
 - ✓ Stoichiometry and target stabilty checked through the well known ²²Ne(p,γ)²³Na resonance at E_{lab}= 1279 keV
 ✓ Ne:Ta ≈ 1:8
- Setup: two HPGe detectors with BGO anticompton shielding

Preliminary results

Strength of the 436 keV resonance compatible with the literature but with a smaller error

Nuclear astrophysics deep underground

- HPGe detector (η=135%)
 shielded by 4 cm copper and
 25 cm lead
- BGO detector (4π): 7 cm radial thickness and 28 cm length

LUNA setup

Solid target

Proton Beam

Pumping Stage

- ✓ Beam energy: 50 400 keV
- Maximum current: 500 μA for protons
- ✓ Energy spread: 100 eV
- Long term stability: 5 eV/h

Purifier

Buffer

LUNA setup

Solid target

- ✓ Beam energy: 50 400 keV
- Maximum current: 500 µA for protons
- ✓ Energy spread: 100 eV
- Long term stability: 5 eV/h

Different phases of the experiment

Measurement of the ${}^{22}Ne(p,\gamma){}^{23}Na$ cross section with isotopically enriched ${}^{22}Ne$ gas:

Germanium detectors

Measurement of different branching ratios of the resonance decay

- 4π BGO detector: • high E_{γ} efficiency $\eta \approx 70$ %
 - Lower energies

Preliminary measurements:

- test with natural neon gas:
 - ✓ Energy range: 120-400 keV
 - ✓ Germanium detector
- gas target characterization

First test with natural neon: ${}^{22}Ne(p,\gamma){}^{23}Na$

- Use of ${}^{2}H(\alpha,\gamma){}^{6}Li$ setup
- Beam Energy: 120 400 keV
- Natural neon gas: v 90.48 % ²⁰Ne

 - ✓ 0.27 % ²¹Ne
 - ✓ 9.25 % ²²Ne

- Windowless gas target
- Pressure: 0.6 2.5 mbar

Results of the test

- Resonance observed for the first time
- Previously only upper limits

 $\omega \gamma = (2.0^{+0.8}_{-1.2}) eV$

Characterization of the gas target

Yield:

$$Y = \int_{z_1}^{z_2} \rho(z) \sigma(E(z)) \eta(z) dz$$

- Density profile studied without the beam
- Overall accurancy of 0.4%

Characterisation of the gas target

- Density profile studied without the beam
- Overall accurancy of 0.4%

Yield:

$$Y = \int_{z_1}^{z_2} \rho(z) \sigma(E(z)) \eta(z) dz$$

The beam heating effect

- Study of the density variation due to the beam heating
 - Natural neon gas
 - ${}^{21}Ne(p,\gamma){}^{22}Na$ resonance at E_{lab} =274 keV
 - NaI detector (2"x2")

Setup for ${}^{22}Ne(p,\gamma){}^{23}Na$ resonances study

 \sim 4 orders of magnitude background reduction compared to the unshielded detectors

Setup for ${}^{22}Ne(p,\gamma){}^{23}Na$ resonances study

 \sim 4 orders of magnitude background reduction compared to the unshielded detectors

Resonances observed so far

E _{lev} [keV]	E _{res} ^{LAB} [keV]	ωγ [eV]
8822	29.2	<5.2E-26
8829.5	37.0	3.1E-15
8862?	71	disregarded
8894?	104	disregarded
8946	159	6.5E-7
8972	186	<2.6E-6
9000?	215	disregarded
9038.7	256	<2.6E-6
9072	291	<2.2E-6
9103	323	<2.2E-6
9113	333	<3.0E-6
9147	369	<6.0E-4
9171	394.0	<6.0E-4
9211.02	436	0.065±0.015
9252.1	479	0.524±0.051
9396.39	630	0.03±0.01
9404.8	639	2.8±0.3
9426,1	661	0.35±0.1

Resonance scan @ E_{res} = 186 keV

Preliminary results, data taking still ongoing

E_{res} = 186 keV - Long Night Run

Preliminary results, data taking still ongoing

Summary

- Strength of the 436 keV resonance has been measured @ HZDR 3MV Tandetron
- @ LUNA 400 kV, with extremely low background, we are measuring the ²²Ne(p,γ)²³Na down to the energies of astrophysical interest
 - Five resonances (E = 158 keV, 186 keV, 256 keV, 323 keV and 333 keV) have been observed so far

Thanks for

your attention

Data taking will be over in June 2014

LUNA Collaboration

- Laboratori Nazionali del Gran Sasso, INFN, Assergi, Italy: A. Best, A. Formicola, M. Junker
- Helmholtz-Zentrum Dresden-Rossendorf, Germany D. Bemmerer, T. Szucs, M. Takacs
- INFN, Padova, Italy C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo
- INFN, Roma La Sapienza, Italy C. Gustavino
- Institute of Nuclear Research (ATOMKI), Debrecen, Hungary Zs. Fülöp, Gy Gyurky, E. Somorjai
- Osservatorio Astronomico di Collurania, Teramo, and INFN, Napoli, Italy
 - O. Straniero

Ruhr-Universität Bochum, Bochum, Germany F. Strieder

- Seconda Università di Napoli, Caserta, and INFN, Napoli, Italy F. Terrasi
- The University of Edinburgh, UK M. Alliotta, C. Bruno, D. Scott
- Università di Genova and INFN, Genova, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati
- Università di Milano, and INFN, Milano, Italy A. Guglielmetti, D. Trezzi
 - Università di Napoli "Federico II", and INFN, Napoli, Italy G. Imbriani, V. Roca
 - INFN, Napoli, Italy A. Di Leva
- Università di Torino, and INFN, Torino, Italy G. Gervino

Backup slides

Astrophysical motivations

- RGB stars:
 - 0.015 GK <T< 0.06 GK (30 keV <E_{cm}< 90 keV)</p>
 - Na and O abundances are in anticorrelation, this can be explained with the action of CNO and NeNa cycle
 - Understand how the products of hydrogen burning can be brought to the surface

Astrophysical motivations

- AGB stars 0.1<T<0.5 GK
 - Composition of mass loss because of the stellar wind
- Novae 0.1<T<0.5 GK 120<E<600 keV
 - the material accreted on the WD becomes degenerate and the H-burning is ignited in unstable conditions: outer layers are expelled
 - the NeNa cycle is important for the composition of the ejecta