Decay of ^{61}Cu in oxide and metallic environment

Aleksandra Cvetinović
Department of Low and Medium Energy Physics (F-2)
Jožef Stefan Institute, Slovenia

11th Rußbach School on Nuclear Astrophysics
March 09-15.2014., Rußbach
Motivations and previous results

- For the most radionuclides that decay by electron capture or internal conversion, the probability for these processes is usually insensitive to the nuclear environment.
- The decay rate depends only very weakly on the electron wave functions.
- Be-7 decays only by electron capture.

Decay of 7Be in metallic environment

Zs. Fülöpa, Gy. Gyürkya, E. Somorjaia, D. Schürmannb, F. Raiolab, F. Striederb, C. Rolfsb, B.N. Limatac, L. Gialanellac, G. Imbrianic, V. Rocac, M. Romanoc, N. De Cesared, A. D’Onofriod, D. Rogallad and F. Terrasid
Kettner et al. predicted a possibility to observe:
- shorter half-life for α and β^+-decay
- longer half-life for β^--decay and electron capture

High-Z electron screening: the cases $^{50}\text{V}(p,n)^{50}\text{Cr}$ and $^{176}\text{Lu}(p,n)^{176}\text{Hf}$

K U Kettner1, H W Becker2, F Strieder2 and C Rolfs2

1 Fachhochschule Bielefeld, Bielefeld, Germany
2 Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany

Environmental effects on nuclear decay rates

ZHOU Shu-Hua(周书华)1

China Institute of Atomic Energy, P. O. Box 275(18), Beijing 102413, China
If the half-life of radioactive nuclei depends on the electron density at the nucleus due to the physical or the chemical state of the atoms

Different half-life in stellar plasma than in the laboratory

Different probability for nucleosynthesis in stars
Experiment

produced in the reaction: $^{60}\text{Ni}(p,\gamma)^{61}\text{Cu}$

- Oxide and metallic nickel targets were activated for 12 hours by proton beam
- Beam energy: 2.48 MeV
- p accelerated by the 2 MV Tandetron accelerator at Jožef Stefan Institute
- Decays were recorded in low-background laboratory every half hour for three days
• Half-life is determined from decay law:

\[
\begin{align*}
A(t) &= A(0) \left(1 - e^{-\lambda t}\right), \\
\lambda &= \frac{\ln(2)}{t_{1/2}}
\end{align*}
\]

• \(A(t)\) is the number of decays occurred at time \(t\)

• Table value \(A\downarrow 1/2\) of \(^{61}\text{Cu}\): 3.333 (5) h

• Half-life in nickel-oxide: 3.3280 (2) h

• Half-life in nickel: 3.3238 (2) h
Electronic configuration of nickel in the ground state is: \([\text{Ar}] \, 3d^8 \, 4s^2\)

- The weakest bound electrons are from shell 4s and over them nickel can build chemical bond with an oxygen atom.
- In NiO this electrons cannot contribute to the electron capture, but in Ni they can.

If we take into account the electron capture from N shell, for the fractional capture probabilities holds:

\[
\begin{align*}
A\downarrow A + A\downarrow A + A\downarrow A + A\downarrow A &= 1 \\
A\downarrow A &= \{1 + A\downarrow A / A\downarrow A [1 + A\downarrow A / A\downarrow A (1 + A\downarrow A / A\downarrow A)]\}^{-1} \\
A\downarrow A &= A\downarrow A (A\downarrow A / A\downarrow A) , \quad A\downarrow A = A\downarrow A (A\downarrow A / A\downarrow A) \\
A\downarrow A / A\downarrow A &= A\downarrow A / A\downarrow A (A\downarrow A / A\downarrow A - A\downarrow A A\downarrow A / A\downarrow A) - A\downarrow A A\downarrow A / A\downarrow A) \uparrow 2
\end{align*}
\]
\[A \downarrow A \uparrow 1 \uparrow 2 / A \downarrow A \uparrow 2 \cdot A(A \downarrow 1)/A(A) \cdot [1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1]/1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1] \]

\[A \downarrow A \uparrow = A \downarrow A \downarrow 1 \uparrow 2 / A \downarrow A \downarrow 1 \uparrow 2 \cdot A(A \downarrow 1)/A(A) \cdot [1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1]/1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1] \]

\[A \downarrow A \uparrow 1 \uparrow 2 / A \downarrow A \uparrow 2 \cdot A(A \downarrow 1)/A(A) \cdot [1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1]/1+(A \downarrow A \downarrow 2 / A \downarrow A \downarrow 1] \]

- The ratios of the radial wave functions
- The ratios of the correction factors for overlap and exchange
- The subshell ratios
Conclusions

- For difference in half-live time in metallic compared to oxide targets from the experiment we got 0.12(1) %
- For the variations in electron densities from the theoretical model we got 0.035(3) %
- We are not sure what is the electronic configuration of copper in the nickel lattice
- In atomic beryllium decay rate is much more sensitive to chemical state of the atoms than in copper
Thank you for your attention!